期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
加权黎曼流形上加权非线性反应扩散方程的微分Harnack估计
1
作者
王宇钊
王雪明
《数学杂志》
2020年第6期653-661,共9页
本文研究了黎曼流形上的微分Harnack估计问题.利用最大值原理和加权的p-Bochner公式的方法,在CD(0,N)条件下,获得了加权黎曼流形上加权非线性反应扩散方程的Li-Yau型和Hamilton型微分Harnack估计,推广了作者在不加权时非负Ricci曲率条...
本文研究了黎曼流形上的微分Harnack估计问题.利用最大值原理和加权的p-Bochner公式的方法,在CD(0,N)条件下,获得了加权黎曼流形上加权非线性反应扩散方程的Li-Yau型和Hamilton型微分Harnack估计,推广了作者在不加权时非负Ricci曲率条件下成立的结果.
展开更多
关键词
加权反应扩散方程
Li-Yau估计
Hamilton估计
曲率维数条件
Bochner公式
下载PDF
职称材料
题名
加权黎曼流形上加权非线性反应扩散方程的微分Harnack估计
1
作者
王宇钊
王雪明
机构
山西大学数学科学学院
出处
《数学杂志》
2020年第6期653-661,共9页
基金
Supported by National Natural Science Foundation of China(11701347)
Natural Science Foundation of Shanxi Province(201901D211185).
文摘
本文研究了黎曼流形上的微分Harnack估计问题.利用最大值原理和加权的p-Bochner公式的方法,在CD(0,N)条件下,获得了加权黎曼流形上加权非线性反应扩散方程的Li-Yau型和Hamilton型微分Harnack估计,推广了作者在不加权时非负Ricci曲率条件下成立的结果.
关键词
加权反应扩散方程
Li-Yau估计
Hamilton估计
曲率维数条件
Bochner公式
Keywords
weighted
nonlinear
reaction
diffusion
equation
Li-yau
type
difference
Harnack
estimate
hamilton
type
difference
Harnack
estimate
curvature
dimension
condition
weighted
p-Bochner
formula
分类号
O175.29 [理学—数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
加权黎曼流形上加权非线性反应扩散方程的微分Harnack估计
王宇钊
王雪明
《数学杂志》
2020
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部