Major and trace elements as well as strontium isotopic composition have been analyzed on the acid-insoluble (AI) phase of the loess-paleosol sequence from Luochuan, Shaanxi Province, China. Results show that the chemi...Major and trace elements as well as strontium isotopic composition have been analyzed on the acid-insoluble (AI) phase of the loess-paleosol sequence from Luochuan, Shaanxi Province, China. Results show that the chemical composition of AI phase of loess and paleosols is distinctive to the average composition of upper continental crust (UCC), characterized by depletion of mobile elements Na, Ca and Sr. The distribution pattern of elements in AI phase reveals that initial dust, derived from a vast area of Asian inland, has suffered from Na- and Ca-removed chemical weathering compared to UCC. Some geochemical parameters (such as CIA values, Na/K, Rb/Sr and87Sr/86Sr ratios) display a regular variation and evolution, reflecting that the chemical weathering in the source region of loess deposits has decreased gradually since 2.5 Ma with the general increase of global ice volume. This coincidence reflects that the aridity of Asian inland since the Quaternary is a possible regional response to the global climate change.展开更多
The chemical leaching method is used for a systematic analysis of distribution characteristics of acid-soluble and acid-insoluble REE and other trace elements from the Luochuan loess deposits. The study shows that the...The chemical leaching method is used for a systematic analysis of distribution characteristics of acid-soluble and acid-insoluble REE and other trace elements from the Luochuan loess deposits. The study shows that the acid-insoluble phase in loess and palaeosol is a stable component of old aeolian dusts and is characteristic of the provenance; the acid-soluble phase is the unstable component in the weathering pedogenic process and reflects rock-forming features after accumulation of aeolian dusts. The acid-insoluble REE and acid-soluble Sr and Pb can be used as geochemical indicators respectively to trace the provenance characteristics and the weathering pedogenic process.展开更多
基金The authors are grateful to Dr. Lu Huayu from the State Key Laboratory of Loess and QuaternaryGeology for his assistance in field work. This work was supported by NKBRSF (G1999043400), National Natural Science Foundation of China (Grant No. 49725307) a
文摘Major and trace elements as well as strontium isotopic composition have been analyzed on the acid-insoluble (AI) phase of the loess-paleosol sequence from Luochuan, Shaanxi Province, China. Results show that the chemical composition of AI phase of loess and paleosols is distinctive to the average composition of upper continental crust (UCC), characterized by depletion of mobile elements Na, Ca and Sr. The distribution pattern of elements in AI phase reveals that initial dust, derived from a vast area of Asian inland, has suffered from Na- and Ca-removed chemical weathering compared to UCC. Some geochemical parameters (such as CIA values, Na/K, Rb/Sr and87Sr/86Sr ratios) display a regular variation and evolution, reflecting that the chemical weathering in the source region of loess deposits has decreased gradually since 2.5 Ma with the general increase of global ice volume. This coincidence reflects that the aridity of Asian inland since the Quaternary is a possible regional response to the global climate change.
文摘The chemical leaching method is used for a systematic analysis of distribution characteristics of acid-soluble and acid-insoluble REE and other trace elements from the Luochuan loess deposits. The study shows that the acid-insoluble phase in loess and palaeosol is a stable component of old aeolian dusts and is characteristic of the provenance; the acid-soluble phase is the unstable component in the weathering pedogenic process and reflects rock-forming features after accumulation of aeolian dusts. The acid-insoluble REE and acid-soluble Sr and Pb can be used as geochemical indicators respectively to trace the provenance characteristics and the weathering pedogenic process.