期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Boosting算法理论与应用研究
被引量:
18
1
作者
张文生
于廷照
《中国科学技术大学学报》
CAS
CSCD
北大核心
2016年第3期222-230,共9页
作为机器学习领域最经典算法之一,Boosting是一种学习算法,并广泛应用于机器学习与模式识别各领域.Boosting的理论研究分为可学习理论和统计学两个角度.Boosting最初从弱可学习理论角度阐明了由弱到强的提升算法,从理论上证明了一组优...
作为机器学习领域最经典算法之一,Boosting是一种学习算法,并广泛应用于机器学习与模式识别各领域.Boosting的理论研究分为可学习理论和统计学两个角度.Boosting最初从弱可学习理论角度阐明了由弱到强的提升算法,从理论上证明了一组优于随机猜测的弱学习器通过集成可提升为在训练集上任意精度的强学习器.从统计学的角度看,Boosting是一种叠加模型,理论上二者的等价性已经证明.本文首先从可学习的角度出发,回顾了Boosting算法弱可学习理论,并提出面临的问题及挑战,包括对高维数据的有效性及Margin理论;然后阐述了Boosting算法理论研究分支,并详细回顾了当前最为流行的多种经典Boosting算法及在Boosting理论框架下的新应用;最后探讨了Boosting算法的未来研究趋势.
展开更多
关键词
BOOSTING
弱可学习理论
Margin理论
集成学习
ADABOOST
下载PDF
职称材料
题名
Boosting算法理论与应用研究
被引量:
18
1
作者
张文生
于廷照
机构
中科院自动化所
出处
《中国科学技术大学学报》
CAS
CSCD
北大核心
2016年第3期222-230,共9页
文摘
作为机器学习领域最经典算法之一,Boosting是一种学习算法,并广泛应用于机器学习与模式识别各领域.Boosting的理论研究分为可学习理论和统计学两个角度.Boosting最初从弱可学习理论角度阐明了由弱到强的提升算法,从理论上证明了一组优于随机猜测的弱学习器通过集成可提升为在训练集上任意精度的强学习器.从统计学的角度看,Boosting是一种叠加模型,理论上二者的等价性已经证明.本文首先从可学习的角度出发,回顾了Boosting算法弱可学习理论,并提出面临的问题及挑战,包括对高维数据的有效性及Margin理论;然后阐述了Boosting算法理论研究分支,并详细回顾了当前最为流行的多种经典Boosting算法及在Boosting理论框架下的新应用;最后探讨了Boosting算法的未来研究趋势.
关键词
BOOSTING
弱可学习理论
Margin理论
集成学习
ADABOOST
Keywords
Boosting
weak
learnability
margin
theory
ensemble
learning
AdaBoost
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Boosting算法理论与应用研究
张文生
于廷照
《中国科学技术大学学报》
CAS
CSCD
北大核心
2016
18
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部