期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Boosting算法理论与应用研究 被引量:18
1
作者 张文生 于廷照 《中国科学技术大学学报》 CAS CSCD 北大核心 2016年第3期222-230,共9页
作为机器学习领域最经典算法之一,Boosting是一种学习算法,并广泛应用于机器学习与模式识别各领域.Boosting的理论研究分为可学习理论和统计学两个角度.Boosting最初从弱可学习理论角度阐明了由弱到强的提升算法,从理论上证明了一组优... 作为机器学习领域最经典算法之一,Boosting是一种学习算法,并广泛应用于机器学习与模式识别各领域.Boosting的理论研究分为可学习理论和统计学两个角度.Boosting最初从弱可学习理论角度阐明了由弱到强的提升算法,从理论上证明了一组优于随机猜测的弱学习器通过集成可提升为在训练集上任意精度的强学习器.从统计学的角度看,Boosting是一种叠加模型,理论上二者的等价性已经证明.本文首先从可学习的角度出发,回顾了Boosting算法弱可学习理论,并提出面临的问题及挑战,包括对高维数据的有效性及Margin理论;然后阐述了Boosting算法理论研究分支,并详细回顾了当前最为流行的多种经典Boosting算法及在Boosting理论框架下的新应用;最后探讨了Boosting算法的未来研究趋势. 展开更多
关键词 BOOSTING 弱可学习理论 Margin理论 集成学习 ADABOOST
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部