期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合弱层惩罚的卷积神经网络模型剪枝方法 被引量:1
1
作者 房志远 石守东 +1 位作者 郑佳罄 胡加钿 《计算机工程》 CAS CSCD 北大核心 2022年第5期67-73,共7页
深度卷积神经网络的存储和计算需求巨大,难以在一些资源受限的嵌入式设备上进行部署。为尽可能减少深度卷积神经网络模型在推理过程中的资源消耗,引入基于几何中值的卷积核重要性判断标准,提出一种融合弱层惩罚的结构化非均匀卷积神经... 深度卷积神经网络的存储和计算需求巨大,难以在一些资源受限的嵌入式设备上进行部署。为尽可能减少深度卷积神经网络模型在推理过程中的资源消耗,引入基于几何中值的卷积核重要性判断标准,提出一种融合弱层惩罚的结构化非均匀卷积神经网络模型剪枝方法。使用欧式距离计算各层卷积核间的信息距离,利用各卷积层信息距离的数据分布特征识别弱层,通过基于贡献度的归一化函数进行弱层惩罚,消除各层间的差异性。在全局层面评估卷积核重要性,利用全局掩码技术对所有卷积核实现动态剪枝。在CIFAR-10、CIFAR-100和SVHN数据集上的实验结果表明,与SFP、PFEC、FPGM和MIL剪枝方法相比,该方法剪枝得到的VGG16单分支、Resnet多分支、Mobilenet-v1轻量化网络模型在保证精度损失较小的情况下,有效地减少了模型参数量和浮点操作数。 展开更多
关键词 模型剪枝 弱层惩罚 全局掩码 欧式距离 核重要性评估
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部