Ultra-high spectral purity lasers are of considerable research interests in numerous fields such as coherent optical communication,microwave photonics,distributed optical fiber sensing,gravitational wave detection,opt...Ultra-high spectral purity lasers are of considerable research interests in numerous fields such as coherent optical communication,microwave photonics,distributed optical fiber sensing,gravitational wave detection,optical clock,and so on.Herein,to deeply purify laser spectrum with compact size under normal condition,we propose a novel and practical idea to effectively suppress the spontaneous radiation of the laser cavity through weak external distributed perturbation.Subsequently,a laser configuration consisting of a main lasing cavity and an external distributed feedback cavity is proposed.The feedback signal with continuous spatio-temporal phase transition controlled by a distributed feedback structure is injected into the main cavity,which can deeply suppress the coupling rate from the spontaneous radiation to the stimulated emission and extremely purify the laser spectrum.Eventually,an ultra-narrow linewidth on-chip laser system with a side mode suppression ratio greater than 80 dB,an output linewidth of 10 Hz,and a relative intensity noise less than-150 dB/Hz is successfully obtained under normal conditions.The proposed concept in this work provides a new perspective for extreme regulation of laser parameters by using weak external distributed perturbation,which can be valid for various gain-type lasers with wide wavelength bands.展开更多
A comprehensive simulation was performed to better understand the impacts and effects of the additional technical noises on weak-light phase-locking for LISA. The result showed that the phase of the slave laser tracke...A comprehensive simulation was performed to better understand the impacts and effects of the additional technical noises on weak-light phase-locking for LISA. The result showed that the phase of the slave laser tracked well with the received transmitting light under different noise level, and the locking precision was limited by the phase readout noise when the laser frequency noise and clock jitter noise were removed. This result was then confirmed by a benchtop experimental test. The required LISA noise floor was recovered from the simulation which proved the validity of the simulation program. In order to convert the noise function into real time data with random characteristics, an algorism based on Fourier transform was also invented.展开更多
We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to...We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(61635004)the National Science Fund for Distinguished Young Scholars(61825501)the Chongqing Natural Science Foundation of Innovative Research Groups under Grant(CSTC2020JCYJ,CXTTX0005)。
文摘Ultra-high spectral purity lasers are of considerable research interests in numerous fields such as coherent optical communication,microwave photonics,distributed optical fiber sensing,gravitational wave detection,optical clock,and so on.Herein,to deeply purify laser spectrum with compact size under normal condition,we propose a novel and practical idea to effectively suppress the spontaneous radiation of the laser cavity through weak external distributed perturbation.Subsequently,a laser configuration consisting of a main lasing cavity and an external distributed feedback cavity is proposed.The feedback signal with continuous spatio-temporal phase transition controlled by a distributed feedback structure is injected into the main cavity,which can deeply suppress the coupling rate from the spontaneous radiation to the stimulated emission and extremely purify the laser spectrum.Eventually,an ultra-narrow linewidth on-chip laser system with a side mode suppression ratio greater than 80 dB,an output linewidth of 10 Hz,and a relative intensity noise less than-150 dB/Hz is successfully obtained under normal conditions.The proposed concept in this work provides a new perspective for extreme regulation of laser parameters by using weak external distributed perturbation,which can be valid for various gain-type lasers with wide wavelength bands.
基金supported by the Space Science Research Projects in Advance(Grant No.O930143XM1)the Scientific Equipment Development and Research Project(Grant No.Y231411YB1) of Chinese Academy of Sciences
文摘A comprehensive simulation was performed to better understand the impacts and effects of the additional technical noises on weak-light phase-locking for LISA. The result showed that the phase of the slave laser tracked well with the received transmitting light under different noise level, and the locking precision was limited by the phase readout noise when the laser frequency noise and clock jitter noise were removed. This result was then confirmed by a benchtop experimental test. The required LISA noise floor was recovered from the simulation which proved the validity of the simulation program. In order to convert the noise function into real time data with random characteristics, an algorism based on Fourier transform was also invented.
基金Supported by the National Natural Science Foundation of China under Grant No 61205103
文摘We propose a simple iterative algorithm based on a temporally movable phase modulation process to retrieve the weak temporal phase of laser pulses. This unambiguous method can be used to achieve a high accuracy and to simultaneously measure the weak temporal phase and temporal profile of pulses, which are almost transform- limited. A detailed analysis shows that this iterative method has valuable potential applications in the charac- terization of pulses with weak temporal phase.