期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于ICA包络增强MEMD的滚动轴承故障诊断 被引量:10
1
作者 李红贤 韩延 +1 位作者 吴敬涛 汤宝平 《航空动力学报》 EI CAS CSCD 北大核心 2021年第2期405-412,共8页
针对多元经验模态分解(MEMD)存在模态混叠、带内噪声干扰导致轴承故障特征信息微弱难提取问题,提出了基于独立分量分析(ICA)包络增强MEMD的滚动轴承故障诊断。采用MEMD对多通道信号进行自适应分解,依据峭度和相关系数选取包含故障信息... 针对多元经验模态分解(MEMD)存在模态混叠、带内噪声干扰导致轴承故障特征信息微弱难提取问题,提出了基于独立分量分析(ICA)包络增强MEMD的滚动轴承故障诊断。采用MEMD对多通道信号进行自适应分解,依据峭度和相关系数选取包含故障信息的本征模态函数(IMF);对所选取IMF分量的包络信号进行ICA分析,抑制模态混叠和削弱带内噪声;选取峭度最大的独立分量包络进行频谱分析,判断滚动轴承的运行状况。实测信号结果表明:ICA包络增强MEMD后包络谱中可以清楚地看到前6阶故障频率,故障特征频率误差小于1 Hz,其他方法只能看到2~3阶,且干扰频率成分较多。 展开更多
关键词 多元经验模态分解 独立分量分析 滚动轴承 特征信息微弱 故障诊断
原文传递
Weak characteristic information extraction from early fault of wind turbine generator gearboxKeywords wind turbine generator gearbox, B-singular value decomposition, local mean decomposition, weak characteristic information extraction, early fault warning 被引量:2
2
作者 Xiaoli XU Xiuli LIU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2017年第3期357-366,共10页
Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of use... Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance. 展开更多
关键词 wind turbine generator gearbox μ-singular value decomposition local mean decomposition weak characteristic information extraction early fault warning
原文传递
风电机组齿轮箱早期故障弱特征信息提取方法 被引量:1
3
作者 刘秀丽 徐小力 《北京信息科技大学学报(自然科学版)》 2017年第1期13-19,共7页
风电机组齿轮箱故障发展进程中早期劣化特征信息微弱,采用传统的奇异值分解(Singular Value Decomposition,SVD)降噪方法容易造成有用信息的丢失。针对这一问题提出基于μ-SVD和LMD的弱特征信息提取方法,根据累积贡献率确定降噪阶次进... 风电机组齿轮箱故障发展进程中早期劣化特征信息微弱,采用传统的奇异值分解(Singular Value Decomposition,SVD)降噪方法容易造成有用信息的丢失。针对这一问题提出基于μ-SVD和LMD的弱特征信息提取方法,根据累积贡献率确定降噪阶次进行信号重构,提取出带噪部分信号,对其进行局部均值分解(Local Mean Decomposition,LMD)和μ-SVD降噪处理,叠加得到降噪后的信号。试验研究结果表明,该方法能够明显削弱信号噪声,有效提取早期故障微弱特征信息,有利于实现早期故障预警及动态预知维护。 展开更多
关键词 风电机组齿轮箱 μ-SVD及局部均值分解方法 弱特征信息提取 早期故障预警
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部