Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of use...Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.展开更多
风电机组齿轮箱故障发展进程中早期劣化特征信息微弱,采用传统的奇异值分解(Singular Value Decomposition,SVD)降噪方法容易造成有用信息的丢失。针对这一问题提出基于μ-SVD和LMD的弱特征信息提取方法,根据累积贡献率确定降噪阶次进...风电机组齿轮箱故障发展进程中早期劣化特征信息微弱,采用传统的奇异值分解(Singular Value Decomposition,SVD)降噪方法容易造成有用信息的丢失。针对这一问题提出基于μ-SVD和LMD的弱特征信息提取方法,根据累积贡献率确定降噪阶次进行信号重构,提取出带噪部分信号,对其进行局部均值分解(Local Mean Decomposition,LMD)和μ-SVD降噪处理,叠加得到降噪后的信号。试验研究结果表明,该方法能够明显削弱信号噪声,有效提取早期故障微弱特征信息,有利于实现早期故障预警及动态预知维护。展开更多
基金This research was sponsored by the National Natural Science Foundation of China (Grant Nos. 51275052 and 51105041), and the Key Project Supported by Beijing Natural Science Foundation (Grant No. 3131002).
文摘Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on μ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and μ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.
文摘风电机组齿轮箱故障发展进程中早期劣化特征信息微弱,采用传统的奇异值分解(Singular Value Decomposition,SVD)降噪方法容易造成有用信息的丢失。针对这一问题提出基于μ-SVD和LMD的弱特征信息提取方法,根据累积贡献率确定降噪阶次进行信号重构,提取出带噪部分信号,对其进行局部均值分解(Local Mean Decomposition,LMD)和μ-SVD降噪处理,叠加得到降噪后的信号。试验研究结果表明,该方法能够明显削弱信号噪声,有效提取早期故障微弱特征信息,有利于实现早期故障预警及动态预知维护。