In this paper,a numerical simulation of flow-induced noise by the low Mach number turbulent flow with a sinusoidal wavy wall was presented based on the unsteady incompressible Navier-Stokes equations and Lighthill'...In this paper,a numerical simulation of flow-induced noise by the low Mach number turbulent flow with a sinusoidal wavy wall was presented based on the unsteady incompressible Navier-Stokes equations and Lighthill's acoustic analogy.Large eddy simulation (LES) was used to investigate the space-time flow field and the Smagorinsky sub-grid scale (SGS) model was introduced for turbulence model.Using Lighthill's acoustics analogy,the flow field simulated by LES was taken as near-field sound sources and radiated sound from turbulent flow was computed by the Curle's integral formulation under the low Mach number approximation.Both spanwise wavy wall and streamwise wavy wall with various wall wave amplitudes were discussed to investigate their effects on reducing the drag and flow noise.The relationship between flow noise and drag on the wavy wall is also studied.展开更多
The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by ...The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remai展开更多
The combined effects of thermal and mass convection of viscous incom- pressible and immiscible fluids through a vertical wavy wall and a smooth flat wall are analyzed. The dimensionless governing equations are perturb...The combined effects of thermal and mass convection of viscous incom- pressible and immiscible fluids through a vertical wavy wall and a smooth flat wall are analyzed. The dimensionless governing equations are perturbed into a mean part (the zeroth-order) and a perturbed part (the first-order). The first-order quantities are ob- tained by the perturbation series expansion for short wavelength, in which the terms of the exponential order arise. The analytical expressions for the zeroth-order, the first-order, and the total solutions are obtained. The numerical computations are presented graph- ically to show the salient features of the fluid flow and the heat transfer characteristics. Separate solutions are matched at the interface by using suitable matching conditions. The shear stress and the Nusselt number are also analyzed for variations of the governing parameters. It is observed that the Grashof number, the viscosity ratio, the width ratio, and the conductivity ratio promote the velocity parallel to the flow direction. A reversal effect is observed for the velocity perpendicular to the flow direction.展开更多
Drag reduction experiment of the traveling wavy wall at high Reynolds number is conducted.A suit of traveling wavy wall device is developed.The drag forces of the traveling wavy wall with various wave speeds(c)are m...Drag reduction experiment of the traveling wavy wall at high Reynolds number is conducted.A suit of traveling wavy wall device is developed.The drag forces of the traveling wavy wall with various wave speeds(c)are measured under different water speeds(U)in the K15 cavitation water tunnel and are compared with that of the flat plate.The results show that the mean drag force of the traveling wavy wall have decreased and then increased with oscillation frequency increasing at the same flow speed.Under different flow speeds,when traveling wave wall reached to the minimum of drag force,the corresponding the ratio of the wall motion phase speed c to flow speed U,c /U is slightly different.Within the parameters of the experiment,whenc /U reaches a certain value,the drag force of the traveling wavy wall can be less than that of the flat plate.The drag reduction can be up to 42%.Furthermore,as the value ofc /U increases,the traveling wavy wall can restrain the separation and improve the quality of flow field.展开更多
Drag reduction experiments of the traveling wavy wall at high Reynolds number, ranging from 1.46×106 to 5.83×106 based on the free-stream velocity and the model length, were conducted. A suit of traveling wa...Drag reduction experiments of the traveling wavy wall at high Reynolds number, ranging from 1.46×106 to 5.83×106 based on the free-stream velocity and the model length, were conducted. A suit of traveling wavy wall device was developed and its characteristics of drag reduction at high Reynolds number were investigated. The drag forces of the traveling wavy wall with various wave speeds ( c ) were measured at different wind speeds (U ) in the FL-8 low-speed wind tunnel and compared with the drag force of the flat plate. The results show that the mean drag force of the traveling wavy wall decreases as the value of c /U increases, at different wind velocities, the values of c /U corresponding to minimal drag force of the traveling wavy wall are different, when the values of c /U are larger than 0.6, the mean drag forces of the traveling wavy wall are smaller than those of the flat plate, and the drag reduction can be up to 60%. The drag reduction effectiveness of traveling wavy wall is thus achieved. Furthermore, as the value of c /U increases, the traveling wavy wall can restrain the separation and improve the quality of flow field.展开更多
基金the National Natural Science Foundation of China(No. 10772119)
文摘In this paper,a numerical simulation of flow-induced noise by the low Mach number turbulent flow with a sinusoidal wavy wall was presented based on the unsteady incompressible Navier-Stokes equations and Lighthill's acoustic analogy.Large eddy simulation (LES) was used to investigate the space-time flow field and the Smagorinsky sub-grid scale (SGS) model was introduced for turbulence model.Using Lighthill's acoustics analogy,the flow field simulated by LES was taken as near-field sound sources and radiated sound from turbulent flow was computed by the Curle's integral formulation under the low Mach number approximation.Both spanwise wavy wall and streamwise wavy wall with various wall wave amplitudes were discussed to investigate their effects on reducing the drag and flow noise.The relationship between flow noise and drag on the wavy wall is also studied.
基金supported by the National Natural Science Foundation of China(11332006 and 11272233)the National Key Basic Research Program(2012CB720101)+1 种基金Tianjin University Research and Innovation Foundationthe opening subjects of The State Key Laboratory of Nonlinear Mechanics(LNM),Institute of Mechanics,Chinese Academy of Sciences
文摘The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remai
基金supported by the Major Research Projects of University Grants Commission of India(No. F. No. 37-178 (2009))
文摘The combined effects of thermal and mass convection of viscous incom- pressible and immiscible fluids through a vertical wavy wall and a smooth flat wall are analyzed. The dimensionless governing equations are perturbed into a mean part (the zeroth-order) and a perturbed part (the first-order). The first-order quantities are ob- tained by the perturbation series expansion for short wavelength, in which the terms of the exponential order arise. The analytical expressions for the zeroth-order, the first-order, and the total solutions are obtained. The numerical computations are presented graph- ically to show the salient features of the fluid flow and the heat transfer characteristics. Separate solutions are matched at the interface by using suitable matching conditions. The shear stress and the Nusselt number are also analyzed for variations of the governing parameters. It is observed that the Grashof number, the viscosity ratio, the width ratio, and the conductivity ratio promote the velocity parallel to the flow direction. A reversal effect is observed for the velocity perpendicular to the flow direction.
文摘Drag reduction experiment of the traveling wavy wall at high Reynolds number is conducted.A suit of traveling wavy wall device is developed.The drag forces of the traveling wavy wall with various wave speeds(c)are measured under different water speeds(U)in the K15 cavitation water tunnel and are compared with that of the flat plate.The results show that the mean drag force of the traveling wavy wall have decreased and then increased with oscillation frequency increasing at the same flow speed.Under different flow speeds,when traveling wave wall reached to the minimum of drag force,the corresponding the ratio of the wall motion phase speed c to flow speed U,c /U is slightly different.Within the parameters of the experiment,whenc /U reaches a certain value,the drag force of the traveling wavy wall can be less than that of the flat plate.The drag reduction can be up to 42%.Furthermore,as the value ofc /U increases,the traveling wavy wall can restrain the separation and improve the quality of flow field.
文摘Drag reduction experiments of the traveling wavy wall at high Reynolds number, ranging from 1.46×106 to 5.83×106 based on the free-stream velocity and the model length, were conducted. A suit of traveling wavy wall device was developed and its characteristics of drag reduction at high Reynolds number were investigated. The drag forces of the traveling wavy wall with various wave speeds ( c ) were measured at different wind speeds (U ) in the FL-8 low-speed wind tunnel and compared with the drag force of the flat plate. The results show that the mean drag force of the traveling wavy wall decreases as the value of c /U increases, at different wind velocities, the values of c /U corresponding to minimal drag force of the traveling wavy wall are different, when the values of c /U are larger than 0.6, the mean drag forces of the traveling wavy wall are smaller than those of the flat plate, and the drag reduction can be up to 60%. The drag reduction effectiveness of traveling wavy wall is thus achieved. Furthermore, as the value of c /U increases, the traveling wavy wall can restrain the separation and improve the quality of flow field.