期刊文献+
共找到904篇文章
< 1 2 46 >
每页显示 20 50 100
基于相似数据的支持向量机短期风速预测仿真研究 被引量:95
1
作者 杨锡运 孙宝君 +1 位作者 张新房 李利霞 《中国电机工程学报》 EI CSCD 北大核心 2012年第4期35-41,21,共7页
风电场功率预报是减小大规模风电并网对电网造成不良影响的有效手段,提高短期风速预测的精度是保障风电场功率预报的重要基础。提出了基于相似数据并结合小波分析的支持向量机短期风速预测方法。该方法从大量的数据样本中提取相似数据... 风电场功率预报是减小大规模风电并网对电网造成不良影响的有效手段,提高短期风速预测的精度是保障风电场功率预报的重要基础。提出了基于相似数据并结合小波分析的支持向量机短期风速预测方法。该方法从大量的数据样本中提取相似数据创建训练样本,采用小波分解技术将风速信号分解成低频趋势信号和高频随机信号,分别采用支持向量机理论建模,合成得到风速预测数据。仿真结果表明,相似数据有效地提高了数据的相关度,小波分解使支持向量机模型更好地拟合风速信号的低频和高频特性,提高了预测精度。通过与某风电场的实际风速数据验证,表明模型具有较强的泛化能力,程序运行时间可满足工程需要。 展开更多
关键词 风速 短期预测 相似数据 小波分析 支持向量机
下载PDF
一种基于振动信号的高压断路器故障诊断新方法 被引量:71
2
作者 孙来军 胡晓光 纪延超 《中国电机工程学报》 EI CSCD 北大核心 2006年第6期157-161,共5页
提出一种以小波包特征节点最大系数为特征向量、利用支持向量机状态分类的断路器故障诊断新方法。首先利用小波包分解振动数据,提取状态变化敏感节点作为特征节点形成分解树,利用敏感节点重构完好状态振动信号,并以此作为当前大多断路... 提出一种以小波包特征节点最大系数为特征向量、利用支持向量机状态分类的断路器故障诊断新方法。首先利用小波包分解振动数据,提取状态变化敏感节点作为特征节点形成分解树,利用敏感节点重构完好状态振动信号,并以此作为当前大多断路器诊断系统中使用的指纹信号;同时提取特征节点最大系数形成特征向量,作为支持向量机的输入向量,使用“一对其余”策略进行特征分类。经高压断路器无负载振动信号测试,该方法检测高压断路器故障简单、准确,在实际分析中取得良好诊断效果。 展开更多
关键词 断路器 监视 小波包 支持向量机 故障诊断
下载PDF
基于小波包变换与样本熵的滚动轴承故障诊断 被引量:75
3
作者 赵志宏 杨绍普 《振动.测试与诊断》 EI CSCD 北大核心 2012年第4期640-644,692,共5页
针对滚动轴承振动信号的不规则性和复杂性可以反映轴承故障的发生和发展,提出一种基于小波包变换与样本熵的轴承故障诊断方法。样本熵可以较少地依赖时间序列的长度,将轴承振动信号进行3层小波包分解,利用分解得到的各个频带的样本熵值... 针对滚动轴承振动信号的不规则性和复杂性可以反映轴承故障的发生和发展,提出一种基于小波包变换与样本熵的轴承故障诊断方法。样本熵可以较少地依赖时间序列的长度,将轴承振动信号进行3层小波包分解,利用分解得到的各个频带的样本熵值作为特征向量,利用支持向量机对轴承故障进行分类。对轴承内圈故障、滚动体故障和外圈故障3种故障及不同损伤程度的实测数据进行实验,结果表明该方法取得较高的识别率,具有一定的工程应用价值。 展开更多
关键词 小波包变换 样本熵 故障诊断 支持向量机
下载PDF
基于小波变换和支持向量机的大坝变形预测 被引量:61
4
作者 王新洲 范千 +1 位作者 许承权 李昭 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第5期469-471,507,共4页
提出了一种基于小波变换和支持向量机的大坝变形预测方法。通过小波变换把变形时间序列分解成具有不同频率特征的分量,根据各分量的特点构造不同的支持向量机模型进行预测,然后把各分量的预测结果进行重构,作为最终的变形预测结果。实... 提出了一种基于小波变换和支持向量机的大坝变形预测方法。通过小波变换把变形时间序列分解成具有不同频率特征的分量,根据各分量的特点构造不同的支持向量机模型进行预测,然后把各分量的预测结果进行重构,作为最终的变形预测结果。实例证明,该方法具有很高的预测精度和较强的泛化能力。 展开更多
关键词 小波变换 支持向量机 大坝变形预测
下载PDF
基于小波包分析和支持向量机的水电机组振动故障诊断研究 被引量:55
5
作者 彭文季 罗兴锜 《中国电机工程学报》 EI CSCD 北大核心 2006年第24期164-168,共5页
提出了一种利用小波包分析提取水电机组的振动故障特征和基于支持向量机的水电机组振动故障诊断方法。以二值分类为基础,构建了基于支持向量机的多值分类器。先对水电机组的振动信号进行频谱分析,提取该信号在频率域的特征量,将频谱特... 提出了一种利用小波包分析提取水电机组的振动故障特征和基于支持向量机的水电机组振动故障诊断方法。以二值分类为基础,构建了基于支持向量机的多值分类器。先对水电机组的振动信号进行频谱分析,提取该信号在频率域的特征量,将频谱特征向量作为学习样本,通过训练,使分类器能够建立频谱特征向量和故障类型的映射关系,从而达到故障诊断的目的,并以水电机组振动多故障分类为例,进行了应用检验。结果表明,与常规方法相比,该方法简单有效、并具有很好的分类能力和良好的鲁棒性,可以满足在线故障诊断的要求,适合水电机组振动故障的诊断。该方法为水电机组故障诊断向智能化发展提供了新的途径。 展开更多
关键词 水电机组 振动 故障诊断 小波包分析 支持向量机
下载PDF
风场短期风速预测研究 被引量:47
6
作者 罗文 王莉娜 《电工技术学报》 EI CSCD 北大核心 2011年第7期68-74,共7页
提出一种基于支持向量机的短期风速预测模型,并通过小波分解和遗传算法实现模型中的数据预处理和参数寻优。模型包括数据处理单元、参数寻优单元和支持向量机单元,以历史风速值作为输入,输出未来时间段的风速值。同时,通过引入模型的可... 提出一种基于支持向量机的短期风速预测模型,并通过小波分解和遗传算法实现模型中的数据预处理和参数寻优。模型包括数据处理单元、参数寻优单元和支持向量机单元,以历史风速值作为输入,输出未来时间段的风速值。同时,通过引入模型的可调参数,提高模型对应不同风场风速数据的普遍适应性。实验结果表明,模型的预测效果良好,并具有较好的适应性,可适应不同地区的风场数据。 展开更多
关键词 风速预测 小波分解 遗传算法 支持向量机 可调参数
下载PDF
考虑小波奇异信息与不平衡数据集的输电线路故障识别方法 被引量:45
7
作者 黄建明 李晓明 +1 位作者 瞿合祚 张礼得 《中国电机工程学报》 EI CSCD 北大核心 2017年第11期3099-3107,共9页
鉴于输电线路故障识别中数据集的非均衡性问题,提出一种基于小波奇异信息和改进合成少数类过采样(synthetic minority over-sampling technique,SMOTE)算法的输电线路故障识别方法。首先,通过PSCAD/EMTDC仿真构造输电线路故障不平衡数据... 鉴于输电线路故障识别中数据集的非均衡性问题,提出一种基于小波奇异信息和改进合成少数类过采样(synthetic minority over-sampling technique,SMOTE)算法的输电线路故障识别方法。首先,通过PSCAD/EMTDC仿真构造输电线路故障不平衡数据集,结合平稳小波变换(stationary wavelet transform,SWT)与奇异值分解(singular value decomposition,SVD)技术提取相电流及零序电流的故障分量的小波奇异值作为特征参数,然后采用改进SMOTE算法在少数类的样本中心邻域进行插值再抽样处理,调整数据集的不平衡度,利用优化后的数据集训练支持向量机(support vector machine,SVM)组合分类器,对不同故障工况下的10种输电线路故障类型进行分类识别。仿真结果表明,该文的方法能有效地提高分类算法在样本数据不平衡的情况下对少数类的识别能力和整体的识别准确率,具有较好的泛化性和较强的鲁棒性,并且对多种分类算法同样适用。 展开更多
关键词 输电线路 故障类型识别 平稳小波变换 奇异值分解 不平衡数据集 过采样 支持向量机
下载PDF
基于支持向量机的煤岩图像特征抽取与分类识别 被引量:45
8
作者 孙继平 佘杰 《煤炭学报》 EI CAS CSCD 北大核心 2013年第A02期508-512,共5页
为了尽可能减少作业人员数目,研究了煤岩图像的自动识别技术,介绍了煤岩图像的识别基础、小波变换和支持向量机原理,分析了煤岩图像纹理在多尺度分解情况下的特点以及支持向量机的参数设置,利用煤岩图像基于灰度共生矩阵的纹理统计量角... 为了尽可能减少作业人员数目,研究了煤岩图像的自动识别技术,介绍了煤岩图像的识别基础、小波变换和支持向量机原理,分析了煤岩图像纹理在多尺度分解情况下的特点以及支持向量机的参数设置,利用煤岩图像基于灰度共生矩阵的纹理统计量角二阶矩、对比度、相关性、均值、方差构造纹理特征子向量P1,利用煤岩图像不同尺度分解下的角二阶矩、对比度、相关、均值、方差构造纹理特征子向量P2,利用不同尺度分解系数构造纹理特征子向量P3,结合3个特征子向量构造纹理特征向量,最后结合支持向量机对煤岩图像进行分类识别。对不同的特征抽取方式以及煤岩的不同分类进行了比较分析。结果表明:该特征抽取以及分类方法能有效的表达纹理信息,对煤岩的识别准确率达到了97.959 2%,与不使用小波的方法相比提高了7.01%。研究结果可为煤岩界面的自动识别提供依据。 展开更多
关键词 煤岩 小波 支持向量机 图像 特征抽取
下载PDF
基于脑电图识别结合操纵特征的驾驶疲劳检测 被引量:44
9
作者 王斐 王少楠 +2 位作者 王惜慧 彭莹 杨乙丁 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第2期398-404,共7页
精神疲劳影响驾驶员的警觉性和安全驾驶能力,引发的交通安全问题不容忽视。将脑电图识别与车辆操纵特性相结合来检测驾驶员的疲劳状态,预期为搭建疲劳驾驶检测系统提供理论及实验依据。设计了模拟驾驶实验,采集被试者的脑电图(EEG)信号... 精神疲劳影响驾驶员的警觉性和安全驾驶能力,引发的交通安全问题不容忽视。将脑电图识别与车辆操纵特性相结合来检测驾驶员的疲劳状态,预期为搭建疲劳驾驶检测系统提供理论及实验依据。设计了模拟驾驶实验,采集被试者的脑电图(EEG)信号和对应的方向盘操纵数据;针对疲劳程度三分类问题,利用小波包变换和共空间模式算法对EEG信号进行特征提取;依据车辆操纵特性评估驾驶员疲劳程度来确定EEG信号的分类标准;并选择支持向量机对EEG信号进行分类以完成对驾驶员精神疲劳状态的定性分析,分类准确率可达94.259%。 展开更多
关键词 驾驶疲劳 脑电图 操纵特性 共空间模式 小波包变换 支持向量机
下载PDF
基于小波包Shannon熵SVM和遗传算法的电机机械故障诊断 被引量:42
10
作者 张亚楠 魏武 武林林 《电力自动化设备》 EI CSCD 北大核心 2010年第1期87-91,共5页
针对电机机械多故障同时诊断问题,基于小波包、Shannon熵、支持向量机(SVM)和遗传算法,提出了一种电机机械故障诊断新方法,称之为WPSSG法或多模型融合法。该方法选择容错性强的Shannon熵作为特征参数,通过对振动信号进行基于DMeyer小波... 针对电机机械多故障同时诊断问题,基于小波包、Shannon熵、支持向量机(SVM)和遗传算法,提出了一种电机机械故障诊断新方法,称之为WPSSG法或多模型融合法。该方法选择容错性强的Shannon熵作为特征参数,通过对振动信号进行基于DMeyer小波的小波包分解,提取振动信号的小波包Shannon熵为特征向量,将特征向量作为多类别SVM的输入,具有较高的去噪能力;在训练SVM时,与传统方法多采用试凑法选择参数不同,该方法采用遗传算法对SVM的参数进行全局寻优,使SVM获得最佳的分类性能,具有更高的识别准确率。采用凯斯西储大学提供的电机机械故障数据进行实验,结果证明该方法具有很好的可靠性和准确性。 展开更多
关键词 电机 故障诊断 小波包 Shannon熵 支持向量机 遗传算法
下载PDF
基于小波包能量谱和NPE的模拟电路故障诊断 被引量:42
11
作者 孙健 王成华 杜庆波 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第9期2021-2027,共7页
提出采用小波包能量谱和邻域保持嵌入作为预处理实行特征提取的模拟电路故障诊断方法。该方法对采集到的故障响应信号进行小波包分解,将不同频带内的能量作为故障特征值,然后利用邻域保持嵌入算法进一步提取故障特征,最后将所得到的最... 提出采用小波包能量谱和邻域保持嵌入作为预处理实行特征提取的模拟电路故障诊断方法。该方法对采集到的故障响应信号进行小波包分解,将不同频带内的能量作为故障特征值,然后利用邻域保持嵌入算法进一步提取故障特征,最后将所得到的最优故障特征输入支持向量机进行故障诊断。仿真结果表明,提出的故障特征提取方法能很好地反映故障响应信号的本质特征,不仅表现出了比其他特征提取方法更好的性能,而且最后的故障诊断中也获得了令人满意的结果。 展开更多
关键词 模拟电路 故障诊断 特征提取 小波包能量谱 邻域保持嵌入 支持向量机
下载PDF
连续小波变换高光谱数据的土壤有机质含量反演模型构建 被引量:42
12
作者 于雷 洪永胜 +1 位作者 周勇 朱强 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2016年第5期1428-1433,共6页
土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方... 土壤有机质含量是反映土壤肥力的重要指标,对其进行动态监测是实施精准农业的重要措施。近年来,众多学者尝试采用土壤近地传感(proximal soil sensing),尤其是近地高光谱技术,在田间和实验室获取不同形态土壤的高光谱数据,不断引入新方法建立适用于不同地域和不同土壤类型的有机质含量的反演模型。该研究在实验室内利用ASD FS3采集了土壤高光谱数据,采用"重铬酸钾-外加热法"测得了土壤有机质含量;分析了土壤原始光谱反射率(R)与有机质含量的相关性,选取R^2>0.15的敏感波段的反射率;利用CWT对土壤原始光谱反射率(R)、光谱反射率的连续统去除(CR)进行不同尺度的分解,分析小波系数与土壤有机质含量的相关性,选取R^2>0.3的敏感波段的小波系数;利用R选取的波段信息和R-CWT,CRCWT的选取的小波系数,分别建立偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机回归(SVMR)三种不同的土壤有机质含量反演模型。结果表明:相比R与土壤有机质含量的决定系数R^2,RCWT,CR-CWT变换后得到的小波系数与土壤有机质含量的决定系数R^2分别提高了0.15和0.2左右;CR-CWT-SVMR的模型效果最为显著,预测集的R^2和RMSE分别为0.83,4.02,RPD值为2.48,具有较高的估测精度,能够全面稳定地估算土壤有机质含量;CR-CWT-PLSR的模型精度与CR-CWT-BPNN,CRCWT-SVMR相比虽有一定差距,但是其计算量要明显小于非线性的BPNN和SVMR方法,具有模型简单、运算速度快等特点,对开发与设计田间传感器具有较大的应用价值。 展开更多
关键词 土壤有机质 高光谱 连续小波变换 偏最小二乘回归 BP神经网络 支持向量机回归
下载PDF
基于小波近似熵的串联电弧故障识别方法 被引量:40
13
作者 郭凤仪 李坤 +3 位作者 陈昌垦 刘艳丽 王喜利 王智勇 《电工技术学报》 EI CSCD 北大核心 2016年第24期164-172,共9页
根据UL1699标准搭建了串联电弧故障发生装置,并针对不同类型负载进行实验,获得了供电线路正常工作状态和发生电弧故障状态时的电流信号实验数据。应用小波变换对电流信号进行分解重构,通过近似熵(Ap En)算法对分解重构后各频段信号的不... 根据UL1699标准搭建了串联电弧故障发生装置,并针对不同类型负载进行实验,获得了供电线路正常工作状态和发生电弧故障状态时的电流信号实验数据。应用小波变换对电流信号进行分解重构,通过近似熵(Ap En)算法对分解重构后各频段信号的不规则程度进行量化,得到电流信号的特征向量,并将其输入到支持向量机(SVM)。通过SVM对电流信号特征向量进行分类,完成电弧故障的检测识别。结果表明,通过小波近似熵算法得到的电弧故障特征向量能够作为诊断识别电弧故障的有效依据。 展开更多
关键词 电弧故障 近似熵 特征向量 小波分解 支持向量机
下载PDF
基于骨干微粒群算法和支持向量机的电机转子断条故障诊断 被引量:40
14
作者 史丽萍 王攀攀 +1 位作者 胡泳军 韩丽 《电工技术学报》 EI CSCD 北大核心 2014年第1期147-155,共9页
为了准确识别感应电机转子断条故障,本文提出一种基于骨干微粒群算法和支持向量机的故障诊断新方法,并给出了可行的诊断步骤和分析。首先根据故障电流信号的特点,提出一种基于骨干微粒群算法的基波滤除方法,用以消除基波分量对故障特征... 为了准确识别感应电机转子断条故障,本文提出一种基于骨干微粒群算法和支持向量机的故障诊断新方法,并给出了可行的诊断步骤和分析。首先根据故障电流信号的特点,提出一种基于骨干微粒群算法的基波滤除方法,用以消除基波分量对故障特征的影响。然后利用小波包频带能量分解技术,将残余电流信号分解到不同频带,形成感应电机运行状态的特征向量,并以此作为支持向量机的输入向量。采用"一对一"向量机进行分类,并利用骨干微粒群算法和交叉检验优化支持向量机模型参数。最后实验结果表明,该方法诊断感应电机转子断条故障能取得良好的效果。 展开更多
关键词 感应电机 转子断条 骨干微粒群算法 小波包 支持向量机 故障诊断
下载PDF
基于时频分析与分形理论的GIS局部放电模式识别特征提取方法 被引量:36
15
作者 陈继明 许辰航 +2 位作者 李鹏 邵先军 李超林 《高电压技术》 EI CAS CSCD 北大核心 2021年第1期287-295,共9页
识别局部放电(PD)的缺陷类型是评估电气设备绝缘状况的一项重要指标,通过特高频传感器(UHF)可获取局部放电信号。然而,传统的基于统计参数的信号特征提取方法存在高维数和无效信息过多的缺点,该文提出了一种基于时频分析和分形理论的气... 识别局部放电(PD)的缺陷类型是评估电气设备绝缘状况的一项重要指标,通过特高频传感器(UHF)可获取局部放电信号。然而,传统的基于统计参数的信号特征提取方法存在高维数和无效信息过多的缺点,该文提出了一种基于时频分析和分形理论的气体绝缘组合电气(GIS)局部放电模式识别特征提取方法。首先利用小波变换对局部放电信号获取能量的时频分布图;然后运用差分盒计数法(DBC)对能量分布图进行分形维数的特征提取,并采用线性判别分析(LDA)对特征向量进行降维处理;最后利用支持向量机(SVM)对局部放电缺陷类型进行分类。为验证所提出算法的有效性,在实验室252 kV GIS局部放电仿真实验平台的模型气室内设置了尖端放电、自由微粒放电、沿面放电和悬浮电极放电4种典型缺陷类型,由特高频传感器采集各类缺陷的局部放电信号,后由该文算法进行分类。实验结果表明,采用该文所提特征提取方法对4种典型缺陷类型的识别准确率超过96%,显著优于传统的基于统计参数的信号特征提取方法。 展开更多
关键词 局部放电 模式识别 能量分布 小波变换 分形理论 支持向量机
下载PDF
基于小波分析的最小二乘支持向量机轨道交通客流预测方法 被引量:35
16
作者 杨军 侯忠生 《中国铁道科学》 EI CAS CSCD 北大核心 2013年第3期122-127,共6页
针对城市轨道交通客流预测问题,采用离散一维Daub4小波分析方法对某一时间段的原始客流时间序列数据进行分解;以分解得到的高频分量和低频分量为样本数据,对最小二乘支持向量机进行训练,确定最小二乘支持向量机的核参数σ,以及系数α和... 针对城市轨道交通客流预测问题,采用离散一维Daub4小波分析方法对某一时间段的原始客流时间序列数据进行分解;以分解得到的高频分量和低频分量为样本数据,对最小二乘支持向量机进行训练,确定最小二乘支持向量机的核参数σ,以及系数α和b。利用训练后的最小二乘支持向量机预测未来一段时间客流时间序列数据的高频分量和低频分量,然后再利用Daub4小波分析方法对预测的高频分量和低频分量进行数据重构,从而得到预测的未来一段时间客流时间序列数据。与历史平均预测法和灰色预测法进行比较,结果表明,基于小波分析的支持向量机客流预测方法用于轨道交通短期客流预测具有更好的精度。 展开更多
关键词 轨道交通 客流预测 短期预测 小波分析 支持向量机 数据处理
下载PDF
基于LOF和SVM的智能配电网故障辨识方法 被引量:34
17
作者 胡伟 李勇 +3 位作者 曹一家 张志鹏 赵庆周 段义隆 《电力自动化设备》 EI CSCD 北大核心 2016年第6期7-12,共6页
针对现有智能配电网保护方法存在保护装置整定复杂、协调性差以及易误动等问题,提出一种基于局部异常因子(LOF)检测的配电网保护算法,并对配电网在故障定位后不能进行有效的故障类型辨识这一问题,提出LOF和支持向量机(SVM)相结合的智能... 针对现有智能配电网保护方法存在保护装置整定复杂、协调性差以及易误动等问题,提出一种基于局部异常因子(LOF)检测的配电网保护算法,并对配电网在故障定位后不能进行有效的故障类型辨识这一问题,提出LOF和支持向量机(SVM)相结合的智能配电网故障类型判别方法。根据各节点LOF值的大小实现智能配电网的故障检测与定位;然后对故障处的三相电压进行小波变换,以三相电压的小波奇异熵值建立故障特征样本库,利用反映接地故障信息的零序电压低频能量对故障进行预分类,并以此为基础建立SVM故障类型判别预测模型。该算法可对智能配电网的故障进行有效的检测与定位,并能对故障区域的不同故障类型进行合理分类。 展开更多
关键词 智能配电网 故障定位 局部异常因子 小波变换 支持向量机
下载PDF
基于小波包能量分析及改进支持向量机的风机机械故障诊断 被引量:33
18
作者 许小刚 王松岭 刘锦廉 《动力工程学报》 CAS CSCD 北大核心 2013年第8期606-612,共7页
为了准确诊断风机的机械故障,提出了一种基于小波包能量特征和改进支持向量机的诊断方法.在某4-73No.8D风机实验台上对13种不同运行状态下的振动信号进行采集,利用小波包对振动信号进行消噪、分解与重构,提取其小波包能量特征,得到了各... 为了准确诊断风机的机械故障,提出了一种基于小波包能量特征和改进支持向量机的诊断方法.在某4-73No.8D风机实验台上对13种不同运行状态下的振动信号进行采集,利用小波包对振动信号进行消噪、分解与重构,提取其小波包能量特征,得到了各运行状态下风机多测点信息融合的小波包能量特征向量,并利用改进支持向量机对特征向量样本集进行训练与测试,实现了风机机械故障的分类诊断.结果表明:该诊断方法能够有效地诊断风机机械故障的类别、严重程度和发生部位,且诊断准确率高、测试时间短,适用于在线机械诊断. 展开更多
关键词 风机 故障诊断 小波包能量分析 支持向量机 优化
下载PDF
基于小波的支持向量机算法研究 被引量:25
19
作者 林继鹏 刘君华 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第8期816-819,共4页
基于小波对偶框架和支持向量核函数的条件,提出了一种支持向量小波核函数.该核函数利用小波的多尺度插值特性和稀疏变化特性,不仅提高了模型的精度和迭代的收敛速度,而且还适用于信号的局部分析、信噪分离和突变信号的检测,从而在提高... 基于小波对偶框架和支持向量核函数的条件,提出了一种支持向量小波核函数.该核函数利用小波的多尺度插值特性和稀疏变化特性,不仅提高了模型的精度和迭代的收敛速度,而且还适用于信号的局部分析、信噪分离和突变信号的检测,从而在提高支持向量机(SVM)泛化能力的同时,提高了辨识效果和减少了计算量.基于该核函数和正则化理论提出的最小二乘小波支持向量机用于非线性系统辨识,对SINC函数的逼近,该小波核得到的均方根误差不足高斯径向基核的1/12,对logistic混沌序列预测的均方根误差不超过8×10-6,同时实验表明,预测的长度对预测均方根误差没有显著影响,这表明小波核SVM具有更好的泛化能力. 展开更多
关键词 小波核 混沌 支持向量机 泛化能力
下载PDF
基于小波包特征提取和模糊熵特征选择的柴油机故障分析 被引量:33
20
作者 蒋佳炜 胡以怀 +1 位作者 柯赟 陈彦臻 《振动与冲击》 EI CSCD 北大核心 2020年第4期273-277,298,共6页
船舶动力设备因故障监测信号样本少、变化缓慢、数据特征呈非线性,使得设备故障模式的准确识别和状态预测比较难。尤其是柴油机振动信号的故障诊断,由于柴油机振动信号噪声多,诊断信号难以进行特征选择的问题,提出了基于小波包能量谱特... 船舶动力设备因故障监测信号样本少、变化缓慢、数据特征呈非线性,使得设备故障模式的准确识别和状态预测比较难。尤其是柴油机振动信号的故障诊断,由于柴油机振动信号噪声多,诊断信号难以进行特征选择的问题,提出了基于小波包能量谱特征提取和模糊熵特征择的柴油机故障诊断方法。利用模糊熵对小波包能量谱提取出的特征集进行特征选择,将选择后的特征参数输入LS-SVM进行故障模式识别。试验结果表明,该方法可以提高故障识别准确率。在该试验中,故障识别准确率达到了99.36%,相比于未进行特征选择的特征集,识别准确率提高了0.72%。 展开更多
关键词 小波包分析 模糊熵 特征选择 支持向量机 柴油机故障诊断 故障模式识别
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部