海洋内波是发生在密度分层海水中的波动,对潜艇航行的稳定性和悬停性都有重要影响。本文采用有限体积自适应半结构多重网格法求解Navier-Stokes方程,并用VOF(Volume of Fluid)方法追踪两层流体界面,应用双推板造波法进行内孤立波数值造...海洋内波是发生在密度分层海水中的波动,对潜艇航行的稳定性和悬停性都有重要影响。本文采用有限体积自适应半结构多重网格法求解Navier-Stokes方程,并用VOF(Volume of Fluid)方法追踪两层流体界面,应用双推板造波法进行内孤立波数值造波,对两层流体中的内孤立波数值造波方法进行研究和探讨。数值模拟结果证实了该数值水槽数值造波的有效性和可靠性,并将潜艇放入数值水槽中,研究内孤立波流场演化的过程,为后续研究潜艇的水动力学特性打下了基础。展开更多
With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theo...With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theory lose accuracy as nonlinear effects become prominent. Because spurious harmonic waves and primary waves have different propagation velocities, waves simulated by using the first-order wave-maker theory have an unstable wave profile. In this paper, a numerical wave flume with a piston-type wave-maker based on the second-order wave-maker theory has been established. Dynamic mesh technique was developed. The boundary treatment for irregular wave simulation was specially dealt with. Comparisons of the free-surface elevations using the first-order and second-order wave-maker theory prove that second-order wave-maker theory can generate stable wave profiles in both the spatial and time domains. Harmonic analysis and spectral analysis were used to prove the superiority of the second-order wave-maker theory from other two aspects. To simulate irregular waves, the numerical flume was improved to solve the problem of the water depth variation due to low-frequency motion of the wave board. In summary, the new numerical flume using the second-order wave-maker theory can guarantee the accuracy of waves by adding an extra motion of the wave board. The boundary treatment method can provide a reference for the improvement of nonlinear numerical flume.展开更多
A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equatio...A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equations and the standard κ-ε turbulence model, was developed to simulate the turbulent flows with the free surface, in which the Volume Of Fluid (VOF) method was used to handle the large deformation of the free surface and the relaxation approach of combined wave generation and absorbing was implemented. In order to consider the effects of energy dissipation due to the armors on a slope seawall, a porous media model was proposed and implemented in the numerical wave flume. A series of physical model experiments were carried out in the same condition of the numerical simulation to determine the drag coefficient in the porous media model in terms of the overtopping discharge. Compared the computational value of overtopping over the seawall with the experimental data, the values of the effective drag coefficient was calibrated for the layers of blocks at different locations along the seawalls.展开更多
Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a verti...Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.展开更多
A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interfac...A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.展开更多
文摘海洋内波是发生在密度分层海水中的波动,对潜艇航行的稳定性和悬停性都有重要影响。本文采用有限体积自适应半结构多重网格法求解Navier-Stokes方程,并用VOF(Volume of Fluid)方法追踪两层流体界面,应用双推板造波法进行内孤立波数值造波,对两层流体中的内孤立波数值造波方法进行研究和探讨。数值模拟结果证实了该数值水槽数值造波的有效性和可靠性,并将潜艇放入数值水槽中,研究内孤立波流场演化的过程,为后续研究潜艇的水动力学特性打下了基础。
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51579038,51739010,51490672,51879037)
文摘With growing computational power, the first-order wave-maker theory has become well established and is widely used for numerical wave flumes. However, existing numerical models based on the first-order wave-maker theory lose accuracy as nonlinear effects become prominent. Because spurious harmonic waves and primary waves have different propagation velocities, waves simulated by using the first-order wave-maker theory have an unstable wave profile. In this paper, a numerical wave flume with a piston-type wave-maker based on the second-order wave-maker theory has been established. Dynamic mesh technique was developed. The boundary treatment for irregular wave simulation was specially dealt with. Comparisons of the free-surface elevations using the first-order and second-order wave-maker theory prove that second-order wave-maker theory can generate stable wave profiles in both the spatial and time domains. Harmonic analysis and spectral analysis were used to prove the superiority of the second-order wave-maker theory from other two aspects. To simulate irregular waves, the numerical flume was improved to solve the problem of the water depth variation due to low-frequency motion of the wave board. In summary, the new numerical flume using the second-order wave-maker theory can guarantee the accuracy of waves by adding an extra motion of the wave board. The boundary treatment method can provide a reference for the improvement of nonlinear numerical flume.
基金Project supported by the National Natural Science Foundation of China (Grant No.10572093)the Doctorial Program Foundation of MOE of China(Grant No. 20060248046).
文摘A new mathematical model for the overtopping against seawalls armored with artificial units in regular waves was established. The 2-D numerical wave flume, based on the Reynolds Averaged Navier-Stokes (RANS) equations and the standard κ-ε turbulence model, was developed to simulate the turbulent flows with the free surface, in which the Volume Of Fluid (VOF) method was used to handle the large deformation of the free surface and the relaxation approach of combined wave generation and absorbing was implemented. In order to consider the effects of energy dissipation due to the armors on a slope seawall, a porous media model was proposed and implemented in the numerical wave flume. A series of physical model experiments were carried out in the same condition of the numerical simulation to determine the drag coefficient in the porous media model in terms of the overtopping discharge. Compared the computational value of overtopping over the seawall with the experimental data, the values of the effective drag coefficient was calibrated for the layers of blocks at different locations along the seawalls.
基金supported by the National Natural Science Foundation of China(Grant No.50779045)
文摘Quarter circular breakwater (QCB) is a new-type breakwater developed from senti-circular breakwater (SCB). The superstructure of QCB is composed of a quarter circular front wall, a horizontal base slab and a vertical rear wall. The width of QCB' s base slab is about half that of SCB, which makes QCB suitable to be used on relatively finn soil foundation. The numerical wave flume based on the Reynolds averaged Navier-Stokes equations for impressible viscosity fluid is adopted in this paper to simulate the hydraulic performances of QCB. Since the geometry of both breakwaters is similar and SCB has been studied in depth, the hydraulic performances of QCB are given in comparison with those of SCB.
基金The Innovative Research Groups of the National Natural Science Foundation of China under contract No.51021004the National Natural Science Foundation for Youth of China under contract No. 51109018+2 种基金the Open Foundation of Water & Sediment Science and Water Hazard Prevention Hunan Provincial Key Laboratory under contract No. 2011SS05the Open Foundation of Port,Coastal and offshore Engineering Hunan Provincial Key Discipline under contract No. 20110815001the Open Foundation of State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HSSKLTJU-201208.
文摘A spatially adaptive (SA) two-dimensional (2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set (MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.