Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh f...Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H— and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.展开更多
A typhoon leading is an important natural disaster to many disasters to China. A giant wave caused by it has brought large threat for an offshore project. Based on the maximum entropy principle,one new model which has...A typhoon leading is an important natural disaster to many disasters to China. A giant wave caused by it has brought large threat for an offshore project. Based on the maximum entropy principle,one new model which has 4 undetermined parameters is constructed,which is called the discrete maximum entropy probabilistic model. In practical applications,the design wave height is considered as soon as possible in a typhoon affected sea areas,the result fits the observed data well. Further more this model does not have the priority compared with other distributions as Poisson distribution. The model provides a theoretical basis for the engineering design more reasonable when considering typhoon factors comprehensively.展开更多
Studies on the possible effects of a detached breakwater on the characteristics of the wave field are carried out experimentally. A serpentine wave generator is used to generate both uni- and multi- directional waves....Studies on the possible effects of a detached breakwater on the characteristics of the wave field are carried out experimentally. A serpentine wave generator is used to generate both uni- and multi- directional waves. Characteristics of the wave fields analyzed here include the wave field directionality, and the probability distributions of surface elevations and of the wave heights. Owing to the presence of the breakwater. waves outside the harbour are Found to be reflected with, however, concentrated energy within the harbour entrance. In general. wave heights can be approximated with a Rayleigh distribution, with occasional deviations from the theory. This occurs more frequently for waves with higher peak frequency values than for those with lower values both for uni- and multi-directional waves. Surface elevations can be approximated with the Gaussian model, although the Edgeworth's form of the type A Gram- Charlier series expansions would yield better fits. Wave directionality is found to have no discernible effects on the statistical characteristics of the wave field.展开更多
采用NCEP-FNL(Final Operational Global Analysis)再分析风场资料及WW3(WAVEWATCH Ⅲ)海浪模式对2015年连续发生的1509号台风"灿鸿"、1510号台风"莲花"和1511号台风"浪卡"进行数值模拟。通过与卫星高度...采用NCEP-FNL(Final Operational Global Analysis)再分析风场资料及WW3(WAVEWATCH Ⅲ)海浪模式对2015年连续发生的1509号台风"灿鸿"、1510号台风"莲花"和1511号台风"浪卡"进行数值模拟。通过与卫星高度计资料和浮标观测资料对比,验证了模拟结果的有效性,并分析台风浪的特征。结果表明:采用再分析风场资料驱动WW3海浪模式,较好地模拟了3个台风影响下西北太平洋海浪场的分布和演变特征;模拟波高与遥感的轨道波高资料相关性超过0.7,平均相对误差小于0.23,风速误差是造成模拟误差的主要原因;台风浪的大小不仅取决于台风强度,还受海域的影响。近海海域由于海岸与岛屿的阻碍,波浪能量频散受到抑制,易产生局地巨浪;而深海大洋开阔海域,易于台风浪能量传播。本文相关结论为台风浪的定量预报及防灾减灾提供有益参考。展开更多
A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a conti...A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.展开更多
This paper reveals that the long-period statistic distribution of the characteristic heights of deep-water waves assumes the lognormal distribution. Thereafter, the largest wave-height which may occur in the service l...This paper reveals that the long-period statistic distribution of the characteristic heights of deep-water waves assumes the lognormal distribution. Thereafter, the largest wave-height which may occur in the service life of coastal structures is derived in this paper.展开更多
This practical method for calculating the probability of a wave breaking and the distribution of breaking weve heights is based on the joint probebility distribution of wave heights and periods derived by Sun Fu and t...This practical method for calculating the probability of a wave breaking and the distribution of breaking weve heights is based on the joint probebility distribution of wave heights and periods derived by Sun Fu and the breaking criterion obtained by Ochi and Tsai from measurements of irregular waves generated in a tank. Computations for differnt an states using the P-M spectrum and the JONSWAP spectrum showed that the probability of wave basking (or the distribution of beding were heights) in the deep ocean can be determined, at least approximated, from the zero, the first and the scond moments of the wave spectrum.展开更多
文摘Based on the maximum entropy principle, a probability density function (PDF) is derived for the distribution of wave heights in a random wave field, without any more hypothesis. The present PDF, being a non-Rayleigh form, involves two parameters: the average wave height H— and the state parameter γ. The role of γ in the distribution of wave heights is examined. It is found that γ may be a certain measure of sea state. A least square method for determining γ from measured data is proposed. In virtue of the method, the values of γ are determined for three sea states from the data measured in the East China Sea. The present PDF is compared with the well known Rayleigh PDF of wave height and it is shown that it much better fits the data than the Rayleigh PDF. It is expected that the present PDF would fit some other wave variables, since its derivation is not restricted only to the wave height.
基金Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting under contract No. LOMF1101the National Natural Science Foundation of China under contract No. 40776006Shanghai Typhoon Research Fund under contract No. 2009ST05
文摘A typhoon leading is an important natural disaster to many disasters to China. A giant wave caused by it has brought large threat for an offshore project. Based on the maximum entropy principle,one new model which has 4 undetermined parameters is constructed,which is called the discrete maximum entropy probabilistic model. In practical applications,the design wave height is considered as soon as possible in a typhoon affected sea areas,the result fits the observed data well. Further more this model does not have the priority compared with other distributions as Poisson distribution. The model provides a theoretical basis for the engineering design more reasonable when considering typhoon factors comprehensively.
文摘Studies on the possible effects of a detached breakwater on the characteristics of the wave field are carried out experimentally. A serpentine wave generator is used to generate both uni- and multi- directional waves. Characteristics of the wave fields analyzed here include the wave field directionality, and the probability distributions of surface elevations and of the wave heights. Owing to the presence of the breakwater. waves outside the harbour are Found to be reflected with, however, concentrated energy within the harbour entrance. In general. wave heights can be approximated with a Rayleigh distribution, with occasional deviations from the theory. This occurs more frequently for waves with higher peak frequency values than for those with lower values both for uni- and multi-directional waves. Surface elevations can be approximated with the Gaussian model, although the Edgeworth's form of the type A Gram- Charlier series expansions would yield better fits. Wave directionality is found to have no discernible effects on the statistical characteristics of the wave field.
文摘采用NCEP-FNL(Final Operational Global Analysis)再分析风场资料及WW3(WAVEWATCH Ⅲ)海浪模式对2015年连续发生的1509号台风"灿鸿"、1510号台风"莲花"和1511号台风"浪卡"进行数值模拟。通过与卫星高度计资料和浮标观测资料对比,验证了模拟结果的有效性,并分析台风浪的特征。结果表明:采用再分析风场资料驱动WW3海浪模式,较好地模拟了3个台风影响下西北太平洋海浪场的分布和演变特征;模拟波高与遥感的轨道波高资料相关性超过0.7,平均相对误差小于0.23,风速误差是造成模拟误差的主要原因;台风浪的大小不仅取决于台风强度,还受海域的影响。近海海域由于海岸与岛屿的阻碍,波浪能量频散受到抑制,易产生局地巨浪;而深海大洋开阔海域,易于台风浪能量传播。本文相关结论为台风浪的定量预报及防灾减灾提供有益参考。
基金supported by the Open Fund of the Key Laboratory of Research on Marine Hazards Forecasting (Grant No.LOMF1101)the Shanghai Typhoon Research Fund (Grant No. 2009ST05)the National Natural Science Foundation of China(Grant No. 40776006)
文摘A new compound distribution model for extreme wave heights of typhoon-affected sea areas is proposed on the basis of the maximum-entropy principle. The new model is formed by nesting a discrete distribution in a continuous one, having eight parameters which can be determined in terms of observed data of typhoon occurrence-frequency and extreme wave heights by numerically solving two sets of equations derived in this paper. The model is examined by using it to predict the N-year return-period wave height at two hydrology stations in the Yellow Sea, and the predicted results are compared with those predicted by use of some other compound distribution models. Examinations and comparisons show that the model has some advantages for predicting the N-year return-period wave height in typhoon-affected sea areas.
文摘This paper reveals that the long-period statistic distribution of the characteristic heights of deep-water waves assumes the lognormal distribution. Thereafter, the largest wave-height which may occur in the service life of coastal structures is derived in this paper.
文摘This practical method for calculating the probability of a wave breaking and the distribution of breaking weve heights is based on the joint probebility distribution of wave heights and periods derived by Sun Fu and the breaking criterion obtained by Ochi and Tsai from measurements of irregular waves generated in a tank. Computations for differnt an states using the P-M spectrum and the JONSWAP spectrum showed that the probability of wave basking (or the distribution of beding were heights) in the deep ocean can be determined, at least approximated, from the zero, the first and the scond moments of the wave spectrum.