Taking the waterhead area of the middle line project for diverting water from the south to the north,Hanjiang watershed in Shiquan, as an example,ecological remediation of the small watershed was studied from aspects ...Taking the waterhead area of the middle line project for diverting water from the south to the north,Hanjiang watershed in Shiquan, as an example,ecological remediation of the small watershed was studied from aspects of necessity,practicability,plans and aims. The ecological restoration for soil and water conservation in Hanjiang River basin can not only control soil erosion and effectively protect water resources to provide clean water for people living in the lower reaches of Hanjiang mainstream,but also increase farmers' income and protect environment, which is both typical and exemplary.展开更多
针对当前单一地貌划分单元造成的分类结果破碎或漏分问题,该文引入双尺度流域单元划分方法,即采用两种不同大小流域单元的组合作为地貌划分基本单元,以提高地貌划分的细分性和完整性。以30 m ASTER GDEM数据为数据源,基于最佳地形因子组...针对当前单一地貌划分单元造成的分类结果破碎或漏分问题,该文引入双尺度流域单元划分方法,即采用两种不同大小流域单元的组合作为地貌划分基本单元,以提高地貌划分的细分性和完整性。以30 m ASTER GDEM数据为数据源,基于最佳地形因子组合(高程、地势起伏度、坡度、坡度变率、光照模拟值)、双尺度流域单元、CART决策树算法,实现了北回归线(云南段)地区平原(2类)和山地(7类)共9类地貌的划分,双尺度流域单元划分的最佳流量阈值分别为500、2000。通过平均值、标准差、Moran′s I和人工判读结果对分类结果进行检验,发现基于CART决策树的双尺度流域单元地貌分类方法在北回归线(云南段)地区总体精度可达82.1%,Kappa系数为0.793,总体能够准确识别出研究区的地貌类型空间分布特征,是地貌类型划分的一种可行方法。展开更多
According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and devel...According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.展开更多
基金Supported by the Foundation for Scientific Research of Yangling Vocation and Technical College(A2010001)
文摘Taking the waterhead area of the middle line project for diverting water from the south to the north,Hanjiang watershed in Shiquan, as an example,ecological remediation of the small watershed was studied from aspects of necessity,practicability,plans and aims. The ecological restoration for soil and water conservation in Hanjiang River basin can not only control soil erosion and effectively protect water resources to provide clean water for people living in the lower reaches of Hanjiang mainstream,but also increase farmers' income and protect environment, which is both typical and exemplary.
文摘针对当前单一地貌划分单元造成的分类结果破碎或漏分问题,该文引入双尺度流域单元划分方法,即采用两种不同大小流域单元的组合作为地貌划分基本单元,以提高地貌划分的细分性和完整性。以30 m ASTER GDEM数据为数据源,基于最佳地形因子组合(高程、地势起伏度、坡度、坡度变率、光照模拟值)、双尺度流域单元、CART决策树算法,实现了北回归线(云南段)地区平原(2类)和山地(7类)共9类地貌的划分,双尺度流域单元划分的最佳流量阈值分别为500、2000。通过平均值、标准差、Moran′s I和人工判读结果对分类结果进行检验,发现基于CART决策树的双尺度流域单元地貌分类方法在北回归线(云南段)地区总体精度可达82.1%,Kappa系数为0.793,总体能够准确识别出研究区的地貌类型空间分布特征,是地貌类型划分的一种可行方法。
文摘According to a lot of hydrological and environmental monitoring data, the condition of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is described. The occurrence and development of soil and water loss is analyzed. The conclusion is that: (1) generally, the situation of soil and water loss in the Lancang River Mekong River watershed (in Yunnan section, China) is light, however, soil and water loss in some regions is serious, especially in the middle reach area of the river; (2) soil and water loss in the Lancang River Mekong River (in Yunnan section, China) watershed presents developing tendency and it is mainly caused by human beings. In accordance with these results, the control measures for soil and water loss are discussed.