On the basis of the amplify-and-forward relaying mode, a two-hop distributed cooperative multi-relay system is proposed combining with the space-time block coding OFDM (STBC-OFDM) technique. Taking the maximum end-t...On the basis of the amplify-and-forward relaying mode, a two-hop distributed cooperative multi-relay system is proposed combining with the space-time block coding OFDM (STBC-OFDM) technique. Taking the maximum end-to-end data rate as optimization criterion, the signal-to-noise ratio (SNR) of receiving terminal is deduced. On the basis of the water-filling theory, the optimal power allocation (OPA) is achieved for each subcarrier in each antenna and each relay node (RN) of the two-hop, to realize the resource optimization. Monte Carlo method is adopted in simulation. The simulation results show that compared with the uniform resource allocation scheme, the proposed OPA strategy can.improve the system capacity. And the energy consumption of each transmission bit will be decreased, indicating the improvement of resource efficiency. In the scenario that the total power is limited, the system performance can be enhanced further by the distributed cooperative multi-relay through the diversity gain.展开更多
基金the Ericsson Company and the National Natural Science Foundation of China (60302024).
文摘On the basis of the amplify-and-forward relaying mode, a two-hop distributed cooperative multi-relay system is proposed combining with the space-time block coding OFDM (STBC-OFDM) technique. Taking the maximum end-to-end data rate as optimization criterion, the signal-to-noise ratio (SNR) of receiving terminal is deduced. On the basis of the water-filling theory, the optimal power allocation (OPA) is achieved for each subcarrier in each antenna and each relay node (RN) of the two-hop, to realize the resource optimization. Monte Carlo method is adopted in simulation. The simulation results show that compared with the uniform resource allocation scheme, the proposed OPA strategy can.improve the system capacity. And the energy consumption of each transmission bit will be decreased, indicating the improvement of resource efficiency. In the scenario that the total power is limited, the system performance can be enhanced further by the distributed cooperative multi-relay through the diversity gain.