Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% ...Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.展开更多
Knowledge of haze particles in background areas of North China is limited, although they have been studied well in urban settings. Atmospheric aerosol particles were collected at a background site in the North China P...Knowledge of haze particles in background areas of North China is limited, although they have been studied well in urban settings. Atmospheric aerosol particles were collected at a background site in the North China Plain during 16–31 January, 2011. Water soluble inorganic ions of PM2.5 and physicochemical characteristics of individual particles on hazy and clean days were measured by Ion Chromatography(IC) and Transmission Electron Microscopy(TEM), respectively. Average PM2.5 mass concentration was 50.4±29.9 μg m?3 with 62.5±26.8 μg m?3 on hazy days and 19.9±11.5 μg m?3 on clean days. SO42?, NO3?, and NH4+ with a combined mass concentration of 19.0±11.5 μg m?3 accounted for 69.8%–89.4% of the total water soluble inorganic ions. Size distributions of SO42? and NH4+ showed one unimodal peak at 0.56–1.8 μm on hazy days, whereas NO3? appeared as bimodal peaks at 0.56–1.8 and 5.6–10 μm, respectively. Individual particle analyses showed that the dominant aerosols were a mixture of sulfate, nitrate, and carbonaceous species, which together determine their mixing states. 48-h air mass back trajectories on hazy days suggested that air masses crossed the polluted continental areas(such as Jing-jin-ji region and Shandong province) and entrained ground air pollutants 11–19 hours before reaching the background area. During long-range transport particles undergo ageing and tend to be internally mixed mainly due to condensation in the background atmosphere. Our results suggest that hygroscopic and optical properties of these aerosol particles in the background area differ substantially from those in urban areas.展开更多
The elbow erosion seriously jeopardizes the safe and stable operation of water–slag discharge pipeline of the coal gasification system.This work simulated water–slag elbow characteristics with various slag injection...The elbow erosion seriously jeopardizes the safe and stable operation of water–slag discharge pipeline of the coal gasification system.This work simulated water–slag elbow characteristics with various slag injection positions by simulating five simplified and representative erosion categories,including A-type horizontal-vertical elbow with an upstream flow,B-type horizontal-vertical elbow with a downstream flow,C-type vertical-horizontal elbow with an upstream flow,D-type vertical-horizontal elbow with a downstream flow and E-type horizontal-horizontal elbow.Compared with the C/D-type elbow,where particles were injected uniformly,the A-type elbow and E-type elbow were found to increase erosion rate,while the B-type elbow decreases erosion rate.An interesting discovery is that the elbow erosion rate is relatively low for small particles when particles are injected from the middle and bottom positions of the inlet section of the elbow.Based on the observation,a novel preceding rotating sheet structure was developed to regulate the particle injection position.It shows an excellent anti-erosion performance by reducing the maximum erosion rate of particles with diameters of 50,100,and 200μm by 23%,35%,and 43%,respectively.展开更多
基金Project (51405392) supported by the National Natural Science Foundation of ChinaProject (2019T120954) supported by the China Postdoctoral Science Foundation+1 种基金Project (3102019MS0404) supported by Fundamental Research Funds for the Central Universities, ChinaProject (2018BSHQYXMZZ31) supported by the Postdoctoral Science Foundation of Shaanxi Province, China。
文摘Friction stir welding (FSW) with water cooling and air cooling was used to weld 2219-T62 aluminum alloy joints with a thickness of 20 mm. The effect of cooling conditions on the corrosion resistance of joints in 3.5% NaCl solution was investigated using the open circuit potential (OCP), the potentiodynamic polarization, and the corrosion morphology after immersing for different time. And the precipitates distribution was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results reveal that the weld nugget zone (WNZ) owning positive potential, lower corrosion current density and fine and uniform precipitates, is much more difficult to corrode than the heat affected zone (HAZ) and the base metal (BM). Compared with air-cooled joint, the water-cooled joint has better corrosion resistance. In addition, the results of microstructure observation show that the potential, distribution and size of second phase particles determine the corrosion resistance of FSW AA2219 alloy joints in chlorine-contained solution.
基金supported by Distinguished Youth Foundation of Shandong Provin c e(Grant No.JQ20 1413)the Scientific Research Staring Foundation for the Institute of Arid Meteorology,China Meteorology Administration(Grant No.KYS2014SSKY05)+2 种基金the National Basic Research Program of China(Grant No.2011CB403401)Fundamental Research Funds of Shandong University(Grant No.2014QY001)State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry(Grant No.LAPC-KF-2014-03)
文摘Knowledge of haze particles in background areas of North China is limited, although they have been studied well in urban settings. Atmospheric aerosol particles were collected at a background site in the North China Plain during 16–31 January, 2011. Water soluble inorganic ions of PM2.5 and physicochemical characteristics of individual particles on hazy and clean days were measured by Ion Chromatography(IC) and Transmission Electron Microscopy(TEM), respectively. Average PM2.5 mass concentration was 50.4±29.9 μg m?3 with 62.5±26.8 μg m?3 on hazy days and 19.9±11.5 μg m?3 on clean days. SO42?, NO3?, and NH4+ with a combined mass concentration of 19.0±11.5 μg m?3 accounted for 69.8%–89.4% of the total water soluble inorganic ions. Size distributions of SO42? and NH4+ showed one unimodal peak at 0.56–1.8 μm on hazy days, whereas NO3? appeared as bimodal peaks at 0.56–1.8 and 5.6–10 μm, respectively. Individual particle analyses showed that the dominant aerosols were a mixture of sulfate, nitrate, and carbonaceous species, which together determine their mixing states. 48-h air mass back trajectories on hazy days suggested that air masses crossed the polluted continental areas(such as Jing-jin-ji region and Shandong province) and entrained ground air pollutants 11–19 hours before reaching the background area. During long-range transport particles undergo ageing and tend to be internally mixed mainly due to condensation in the background atmosphere. Our results suggest that hygroscopic and optical properties of these aerosol particles in the background area differ substantially from those in urban areas.
基金the National Natural Science Foundation of China(grant No.22278332)Shaanxi Province's Key Research and Development Plan(grant No.2023-YBGY-317,2023-YBGY-175)+1 种基金Natural Science Basic Research Program of Shaanxi(grant No.2020JQ-597)Natural Science Foundation of Shaanxi Provincial Department of Education(grant No.23JK0723).
文摘The elbow erosion seriously jeopardizes the safe and stable operation of water–slag discharge pipeline of the coal gasification system.This work simulated water–slag elbow characteristics with various slag injection positions by simulating five simplified and representative erosion categories,including A-type horizontal-vertical elbow with an upstream flow,B-type horizontal-vertical elbow with a downstream flow,C-type vertical-horizontal elbow with an upstream flow,D-type vertical-horizontal elbow with a downstream flow and E-type horizontal-horizontal elbow.Compared with the C/D-type elbow,where particles were injected uniformly,the A-type elbow and E-type elbow were found to increase erosion rate,while the B-type elbow decreases erosion rate.An interesting discovery is that the elbow erosion rate is relatively low for small particles when particles are injected from the middle and bottom positions of the inlet section of the elbow.Based on the observation,a novel preceding rotating sheet structure was developed to regulate the particle injection position.It shows an excellent anti-erosion performance by reducing the maximum erosion rate of particles with diameters of 50,100,and 200μm by 23%,35%,and 43%,respectively.