The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control. Based on the theoretical considerations, the experiments of the aerator for a discharge tunnel were conducted...The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control. Based on the theoretical considerations, the experiments of the aerator for a discharge tunnel were conducted, and the relationships between the flow regime and hydraulic and geometric parameters were investigated. The results showed that, there are two kinds of threshold values for the flow regime conversions. One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity, and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity. Two empirical expressions were obtained for the conversions of the flow regimes, which can be used in the designs of the aerators.展开更多
Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush...Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.展开更多
Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek,Yukon,were measured at hourly intervals between June and October 2013.These data were used to simulate the effect of the culver...Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek,Yukon,were measured at hourly intervals between June and October 2013.These data were used to simulate the effect of the culvert on the thermal regime of the road embankment and subjacent permafrost.A 2-D thermal model of the embankment and permafrost was developed with TEMP/W and calibrated using field observations.Empirical relations were obtained between water temperatures at the entrance to the culvert,flow into the culvert,and water temperatures inside the structure.Water temperatures at the entrance and inside the culvert had a linear relation,while water temperatures inside the culvert and water flow were associated by a logarithmic relation.A multiple linear regression was used to summarize these relations.From this relationship,changes in the flow rate and water temperatures at the entrance of the culvert were simulated to obtain predicted water temperatures in the culvert.The temperatures in the culvert were used in the thermal model to determine their effects on the ground thermal regime near the culvert.Variation of ±10% in water flow rate had no impact on the thermal regime underneath the culvert.Variation of water temperature at the entrance of the culvert had a noticeable influence on the thermal regime.A final simulation was conducted without insulation beneath the culvert.The thaw depth was 30 cm with insulation,and 120 cm without insulation,illustrating the importance of insulation to the ground thermal regime.展开更多
基金supported by the National Natural Science Function of China(Grant No.50879021)the Innovative Project of Graduate Student in Jiangsu Province(Grant No.CXLX11_0443)
文摘The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control. Based on the theoretical considerations, the experiments of the aerator for a discharge tunnel were conducted, and the relationships between the flow regime and hydraulic and geometric parameters were investigated. The results showed that, there are two kinds of threshold values for the flow regime conversions. One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity, and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity. Two empirical expressions were obtained for the conversions of the flow regimes, which can be used in the designs of the aerators.
基金supported by the National Science Foundation for Excellent Young researchers of China(52122404)the National Natural Science Foundation of China(41977238)the Fundamental Research Funds for the Central Universities(2021GJZPY14 and 2021YCPY0101).
文摘Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.
基金Transport Canada for financial support and Yukon Highways and Public Works for their support,logistics and assistance during instrumentation at the new Beaver Creek Culvert and information regarding the rules for construction of culverts in Yukon
文摘Temperature and water flow through a culvert beneath the Alaska Highway near Beaver Creek,Yukon,were measured at hourly intervals between June and October 2013.These data were used to simulate the effect of the culvert on the thermal regime of the road embankment and subjacent permafrost.A 2-D thermal model of the embankment and permafrost was developed with TEMP/W and calibrated using field observations.Empirical relations were obtained between water temperatures at the entrance to the culvert,flow into the culvert,and water temperatures inside the structure.Water temperatures at the entrance and inside the culvert had a linear relation,while water temperatures inside the culvert and water flow were associated by a logarithmic relation.A multiple linear regression was used to summarize these relations.From this relationship,changes in the flow rate and water temperatures at the entrance of the culvert were simulated to obtain predicted water temperatures in the culvert.The temperatures in the culvert were used in the thermal model to determine their effects on the ground thermal regime near the culvert.Variation of ±10% in water flow rate had no impact on the thermal regime underneath the culvert.Variation of water temperature at the entrance of the culvert had a noticeable influence on the thermal regime.A final simulation was conducted without insulation beneath the culvert.The thaw depth was 30 cm with insulation,and 120 cm without insulation,illustrating the importance of insulation to the ground thermal regime.