This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoir...This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.展开更多
针对水驱稠油开发效果差、采收率较低的问题,在稠油热水驱室内实验研究的基础上发现,冷/热水交替驱稠油的开发效果更好,与同温度的热水驱相比能提高采收率4.5%。进一步深入研究冷/热水交替驱稠油的注入参数,优化注入参数结果为:注入热...针对水驱稠油开发效果差、采收率较低的问题,在稠油热水驱室内实验研究的基础上发现,冷/热水交替驱稠油的开发效果更好,与同温度的热水驱相比能提高采收率4.5%。进一步深入研究冷/热水交替驱稠油的注入参数,优化注入参数结果为:注入热水段塞温度为80℃,冷水和热水段塞比为1∶1,注入速度为0.5 m L/min,采出程度可达到65.1%。分析表明,冷/热水交替驱稠油与热水驱稠油相比,能够提高水的波及体积,并对油藏能够产生一定的震动作用,因此驱替效果更好。展开更多
文摘This paper moves one step forward to build?a?numerical model to research quantitative characterization and dynamic law for interlayer interference factor (IIF) in the multilayer reservoir which was heavy oil reservoirs and produced by directional wells. There are mainly four contributions of this paper to the existing body of literature. Firstly, an equivalent simulation method of the pseudo start pressure gradient (PSPG) is developed to quantitatively predict the value of?IIF?under different geological reservoir conditions. Secondly, the interlayer interference is extended in time, and the time period of the study extends from a water cut stage to the whole process from the oil well open to produce?a?high water cut. Thirdly, besides the conventional productivity interlayer interference factor (PIIF), a new parameter, that is, the oil recovery interlayer interference factor (RIIF) is put forward.?RIIF?can be used to evaluate the technical indexes of stratified development and multilayer co-production effectively. Fourthly,?the?effectsof various geological reservoir parameters such as reservoir permeability and crude oil viscosity, etc. on the?PIIF?and?RIIF’s?type curves?are?discussed in detail and the typical plate?is?plotted. The research results provide a foundation for the effective development of multilayer heavy oil reservoirs.
文摘针对水驱稠油开发效果差、采收率较低的问题,在稠油热水驱室内实验研究的基础上发现,冷/热水交替驱稠油的开发效果更好,与同温度的热水驱相比能提高采收率4.5%。进一步深入研究冷/热水交替驱稠油的注入参数,优化注入参数结果为:注入热水段塞温度为80℃,冷水和热水段塞比为1∶1,注入速度为0.5 m L/min,采出程度可达到65.1%。分析表明,冷/热水交替驱稠油与热水驱稠油相比,能够提高水的波及体积,并对油藏能够产生一定的震动作用,因此驱替效果更好。