针对传统的水肥灌溉控制器开发中,由于软、硬件分时分步开发,存在算法嵌入复杂,开发流程长,软硬件循环调试等问题。介绍运用基于模型设计方法对水肥灌溉控制器的高效、快速开发。在Simulink平台中建立水肥控制算法模型和被控对象物理模...针对传统的水肥灌溉控制器开发中,由于软、硬件分时分步开发,存在算法嵌入复杂,开发流程长,软硬件循环调试等问题。介绍运用基于模型设计方法对水肥灌溉控制器的高效、快速开发。在Simulink平台中建立水肥控制算法模型和被控对象物理模型,创建系统设计需求追溯关系,多层次测试验证,快速迭代设计方法,在此基础上以STM32核心处理器配置相应芯片底层驱动支持包生成工具(Target Support Package),实现工程代码到嵌入式硬件需求全程自动化。实验结果表明,基于模型设计方法开发快速、代码质量高,且系统响应速度快和实时性好,大幅度提高了水肥灌溉效果。展开更多
文摘针对传统的水肥灌溉控制器开发中,由于软、硬件分时分步开发,存在算法嵌入复杂,开发流程长,软硬件循环调试等问题。介绍运用基于模型设计方法对水肥灌溉控制器的高效、快速开发。在Simulink平台中建立水肥控制算法模型和被控对象物理模型,创建系统设计需求追溯关系,多层次测试验证,快速迭代设计方法,在此基础上以STM32核心处理器配置相应芯片底层驱动支持包生成工具(Target Support Package),实现工程代码到嵌入式硬件需求全程自动化。实验结果表明,基于模型设计方法开发快速、代码质量高,且系统响应速度快和实时性好,大幅度提高了水肥灌溉效果。
文摘针对农业施肥灌溉过程中的水和肥液浓度精准控制问题,设计了基于模糊PID控制技术,应用电导率EC值和p H值的调控技术,开发了精量水肥灌溉控制系统.进行了开环阶跃响应试验和继电振荡调试试验,分析得到系统为非线性、惯性、滞后的复杂系统.结果表明,对EC值检测采用PID控制虽有控制精度高的优点,但在肥液浓度变化较大时控制性能恶化.运用开环阶跃响应、PID控制技术和模糊控制技术,设计出EC值的智能PID控制器,试验表明其具备PID参数自整定能力,控制性能优良,稳定时间180 s内,精度±0.15 m S/cm,超调量<15%.