High-speed watercraft and ships undergo coupled motions which make the front portion of the hull exit and violently re-enter water.This induces short-term slamming loads that may compromise the structural integrity of...High-speed watercraft and ships undergo coupled motions which make the front portion of the hull exit and violently re-enter water.This induces short-term slamming loads that may compromise the structural integrity of the hull.The slamming of the bow can be modeled as straight wedges of different deadrise angles(DRAs)falling into water from different heights.The advent of computational fluid dynamics has allowed the problem of wedge-slamming to be simulated using the full Navier-Stokes equations thus complementing the pioneering studies based on experiments.Recently,most researchers are opting to use commercial software to simulate the wedge-impact problem as it allows access to overset meshing algorithms which are robust in modeling the wedge as a moving body.Embedded boundary methods(EBMs)offer some advantages over overset meshing in that the mesh only needs to be generated once and Cartesian mesh-based solvers can be implemented.However,the application of EBMs to wedge-impact has been limited in the literature and merits further development.In this context,we investigate the applicability of the fast-fictitious-domain(FFD)based embedded boundary treatment to simulate the violent water-entry of wedges.We extend our in-house Navier-Stokes model IITM-RANS3D to handle floating bodies through integration of a rigid-body dynamics solver and an algorithm to embed three-dimensional stereolithography(STL)geometries as solids over a Cartesian mesh.The proposed algorithm is extensively benchmarked against variable DRA wedge-slamming experiments reported in the literature as well as constant DRA wedge-slamming experiments performed in-house.Very good agreement is reported in terms of the time-history of hydrodynamic impact pressures measured at various locations on the hull as well as the wedge motion responses thus demonstrating the suitability of FFD for simulating the coupled hydrodynamics of slamming for simplified hull geometries.展开更多
In order to investigate the impact characteristic of an aircraft landing on water,a computational fluid dynamics(CFD)simulation is conducted to explore the slamming characteristics of the NACA TN 2929 A model.The flow...In order to investigate the impact characteristic of an aircraft landing on water,a computational fluid dynamics(CFD)simulation is conducted to explore the slamming characteristics of the NACA TN 2929 A model.The flow around the model is solved by using Reynolds-averaged Navier-Stokes equations with the shear stress transport(SST)k—ωturbulence model,based on finite volume method(FVM).The free surface is captured by using the volume of fluid(VOF)method,and the aircraft impact process is realized with help of overset mesh technology.Then,the effects of horizontal and vertical velocities and initial pitch angle on the slamming load,attitude change,impact pressure and flow field evolution are investigated.The results reveal that the horizontal velocity has a considerable influence on whether the aircraft’s horizontal tail hits the water,and further affects the maximum vertical load as well as the maximum pitch angle throughout the impact process.The vertical velocity determines the slamming load before the horizontal tail strikes the water,while the horizontal velocity has a significant effect on the load after the horizontal tail hits the water.A smaller initial pitch angle results in not only a heavier slamming load but also a more dramatic change of the posture after the aircraft impacts the water.The impact pressure of the aircraft is maximized at the junction of the approaching surface of the fuselage and the free surface.In some cases,the pressure is also concentrated on the undersurface of the horizontal tail.展开更多
流体和浮体相互作用是海岸及海洋工程急需研究的热点问题之一。文章基于OpenFOAM建立二维数值水槽,利用VOF(Volume of Fluid)方法来捕捉自由表面,通过使用重叠网格方法来描述流固耦合作用。利用建立的数值模型模拟了楔形物块的垂向和斜...流体和浮体相互作用是海岸及海洋工程急需研究的热点问题之一。文章基于OpenFOAM建立二维数值水槽,利用VOF(Volume of Fluid)方法来捕捉自由表面,通过使用重叠网格方法来描述流固耦合作用。利用建立的数值模型模拟了楔形物块的垂向和斜向入水抨击过程,对比了不同状况下的抨击压强分布,分析了水平速度对抨击压强分布的影响。模拟结果与理论解吻合较好,表明了该模型能够合理地模拟物块与水的相互作用问题。展开更多
In this paper,a method about the water-entry slamming of a two-dimensional(2D)bow structure has been proposed based on the experimental and simulation results.According to this method,the sensitivity analysis has been...In this paper,a method about the water-entry slamming of a two-dimensional(2D)bow structure has been proposed based on the experimental and simulation results.According to this method,the sensitivity analysis has been carried out about the effect of speed and inclination angle on the slamming pressure of the bow.Firstly,a 2D ship bow experimental model was performed to obtain the slamming pressure distribution at different measuring points under different speeds.Then,numerical simulation for the water-entry slamming of this experimental model was conducted to obtain the pressure distribution on the experimental model under different working conditions.Finally,the experimental results were compared with the numerical simulation results to evaluate the effect of speed and inclination angle on the slamming pressure of the bow.The results show that the slamming pressure is more sensitive to speed variation within the low-speed range.The effect of inclination angle on the slamming pressure is more obvious in the small angle condition.When the inclination angle is larger than 45°,the effect is limited.展开更多
基金supported by the Naval Research Board(NRB)of DRDO,Ministry of Defence,Government of India under the project"Application of IITM-RANS3D to shipslamming and motion responses"(Grant No.NRB-498/HYD/22-25).
文摘High-speed watercraft and ships undergo coupled motions which make the front portion of the hull exit and violently re-enter water.This induces short-term slamming loads that may compromise the structural integrity of the hull.The slamming of the bow can be modeled as straight wedges of different deadrise angles(DRAs)falling into water from different heights.The advent of computational fluid dynamics has allowed the problem of wedge-slamming to be simulated using the full Navier-Stokes equations thus complementing the pioneering studies based on experiments.Recently,most researchers are opting to use commercial software to simulate the wedge-impact problem as it allows access to overset meshing algorithms which are robust in modeling the wedge as a moving body.Embedded boundary methods(EBMs)offer some advantages over overset meshing in that the mesh only needs to be generated once and Cartesian mesh-based solvers can be implemented.However,the application of EBMs to wedge-impact has been limited in the literature and merits further development.In this context,we investigate the applicability of the fast-fictitious-domain(FFD)based embedded boundary treatment to simulate the violent water-entry of wedges.We extend our in-house Navier-Stokes model IITM-RANS3D to handle floating bodies through integration of a rigid-body dynamics solver and an algorithm to embed three-dimensional stereolithography(STL)geometries as solids over a Cartesian mesh.The proposed algorithm is extensively benchmarked against variable DRA wedge-slamming experiments reported in the literature as well as constant DRA wedge-slamming experiments performed in-house.Very good agreement is reported in terms of the time-history of hydrodynamic impact pressures measured at various locations on the hull as well as the wedge motion responses thus demonstrating the suitability of FFD for simulating the coupled hydrodynamics of slamming for simplified hull geometries.
基金supported by the National Natural Science Foundation of China(Grant No.52061135107)This work was supported by the Liao Ning Revitalization Talents Program(Grant No.XLYC1908027)+1 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.DUT20TD108,DUT20LAB308 and DUT20RC(3)025)the opening project of State Key Laboratory of Explosion Science and Technology(Grant No.KFJJ21-09M).
文摘In order to investigate the impact characteristic of an aircraft landing on water,a computational fluid dynamics(CFD)simulation is conducted to explore the slamming characteristics of the NACA TN 2929 A model.The flow around the model is solved by using Reynolds-averaged Navier-Stokes equations with the shear stress transport(SST)k—ωturbulence model,based on finite volume method(FVM).The free surface is captured by using the volume of fluid(VOF)method,and the aircraft impact process is realized with help of overset mesh technology.Then,the effects of horizontal and vertical velocities and initial pitch angle on the slamming load,attitude change,impact pressure and flow field evolution are investigated.The results reveal that the horizontal velocity has a considerable influence on whether the aircraft’s horizontal tail hits the water,and further affects the maximum vertical load as well as the maximum pitch angle throughout the impact process.The vertical velocity determines the slamming load before the horizontal tail strikes the water,while the horizontal velocity has a significant effect on the load after the horizontal tail hits the water.A smaller initial pitch angle results in not only a heavier slamming load but also a more dramatic change of the posture after the aircraft impacts the water.The impact pressure of the aircraft is maximized at the junction of the approaching surface of the fuselage and the free surface.In some cases,the pressure is also concentrated on the undersurface of the horizontal tail.
文摘流体和浮体相互作用是海岸及海洋工程急需研究的热点问题之一。文章基于OpenFOAM建立二维数值水槽,利用VOF(Volume of Fluid)方法来捕捉自由表面,通过使用重叠网格方法来描述流固耦合作用。利用建立的数值模型模拟了楔形物块的垂向和斜向入水抨击过程,对比了不同状况下的抨击压强分布,分析了水平速度对抨击压强分布的影响。模拟结果与理论解吻合较好,表明了该模型能够合理地模拟物块与水的相互作用问题。
基金the National Natural Science Foundation of China(Grant No.51979130)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170575 and BK20191460).
文摘In this paper,a method about the water-entry slamming of a two-dimensional(2D)bow structure has been proposed based on the experimental and simulation results.According to this method,the sensitivity analysis has been carried out about the effect of speed and inclination angle on the slamming pressure of the bow.Firstly,a 2D ship bow experimental model was performed to obtain the slamming pressure distribution at different measuring points under different speeds.Then,numerical simulation for the water-entry slamming of this experimental model was conducted to obtain the pressure distribution on the experimental model under different working conditions.Finally,the experimental results were compared with the numerical simulation results to evaluate the effect of speed and inclination angle on the slamming pressure of the bow.The results show that the slamming pressure is more sensitive to speed variation within the low-speed range.The effect of inclination angle on the slamming pressure is more obvious in the small angle condition.When the inclination angle is larger than 45°,the effect is limited.