Increasing greening of planet Earth to slow down the rise of atmospheric CO_(2) concentrations is certainly desirable;however,its consequences on water resources are less affirmative and thus are a matter of wide conc...Increasing greening of planet Earth to slow down the rise of atmospheric CO_(2) concentrations is certainly desirable;however,its consequences on water resources are less affirmative and thus are a matter of wide concern.China,as the largest and most successful country of the world in terms of artificial revegetation,is naturally the focus of the concerns and warnings.Based on previous studies,we analyzed the mechanism for the effects of climate and watershed characteristics on water resources,explained various hydrological results and phenomena,and considered the ways in which water consumption by artificial revegetation projects can be reduced.Moreover,some guidelines are suggested for artificial revegetation at watershed scale with consideration of water resource sustainability.The findings of this study highlight the need for more top-down approaches when studying the mechanism of"forest and water".展开更多
基金the High-end Talents Start-up Project of Nanjing University of Information Science&Technology(Grant No.20191040)the National Natural Science Foundation of China(Grant Nos.41890823,42071031,31770493)GDAS’s Special Project of Science and Development(Grant No.2019GDASYL-0104001)。
文摘Increasing greening of planet Earth to slow down the rise of atmospheric CO_(2) concentrations is certainly desirable;however,its consequences on water resources are less affirmative and thus are a matter of wide concern.China,as the largest and most successful country of the world in terms of artificial revegetation,is naturally the focus of the concerns and warnings.Based on previous studies,we analyzed the mechanism for the effects of climate and watershed characteristics on water resources,explained various hydrological results and phenomena,and considered the ways in which water consumption by artificial revegetation projects can be reduced.Moreover,some guidelines are suggested for artificial revegetation at watershed scale with consideration of water resource sustainability.The findings of this study highlight the need for more top-down approaches when studying the mechanism of"forest and water".