Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes...Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes,to influence disease development through diverse behaviors However,existing LD probes face challenges in achieving high targeting and long-term monitoring due to poor photostability and long-term phototoxicity.Carbon quantum dots(CQDs)have gained prominence due to their exceptional fluorescence properties,but their prevalent blue excitation wavelength presents difficulties for long-term imaging.Herein,we synthesized red-emissive carbon quantum dot(R-CQDs)with superior photobleaching resistance and red-emission,thus enabling harmlessly fluorescence monitoring of cells longer than3 h.In addition,R-CQD exhibits suitable amphiphilicity and remarkable solvatochromic effect,allowing rapid targeting to LDs for immediate imaging without cumbersome washing steps.Hence,R-CQD shows high performance for extended observation of dynamic LD behavior in various biological processes,which is confirmed by documenting the course of LDs during starvation as well as lipotoxicity.Compared to commercial probes,R-CQD extends live cell imaging time by at least 9-fold,facilitating the study of LD behavioral characteristics under diverse physiological or pathological conditions.This work provides a reliable fluorescence tool for tracking intercellular microenvironment dynamically thus to understand the divers biological or disease mechanism.展开更多
Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inco...Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inconsistent performance such as low Photoluminescence Quantum Yield(PLQY),poor photostability and tedious washing procedures.Herein,a novel yellow-emissive carbon dot(OT-cD)has been synthesized conveniently with high PLQY up to 90%.Besides,OT-CD exhibits remarkable amphiphilicity and solvatochromic property with lipid-water partition coefficient higher than 2,which is much higher than most LDs probes.These characters enable OT-CD high brightness,stable and wash-free LDs probing,and feasible for in vivo imaging.Then,detailed observation of LDs morphological and polarity variation dynamically in different cellular states were recorded,including ferroptosis and other diseases processes.Furthermore,fast whole imaging of zebrafish and identifed LD enrichment in injured liver indicate its further feasibility for in vivo application.In contrast to the reported studies to date,this approach provides a versatile conventional synthesis system for high-performance LDs targeting probes,combing the advantages of easy and high-yield production,as well as robust brightness and stability for long-term imaging,facilitating investigations into organelle interactions and LD-associated diseases.展开更多
Protein self-labeling tags achieve selective fusion and labeling of target proteins through genetic coding technology,but require exogenous fluorescent probes with fluorogenicity for protein tag binding to have the pe...Protein self-labeling tags achieve selective fusion and labeling of target proteins through genetic coding technology,but require exogenous fluorescent probes with fluorogenicity for protein tag binding to have the performance of wash-free fluorescence imaging in live cells.In this paper,we reported a fluorogenic probe 1 capable of ratiometric fluorescence recognition of SNAP-tag proteins.In this probe,the O6-benzylguanine derivative of 3-hydroxy-1,8-naphthalimide underwent a selective covalent linkage reaction with SNAP-tag protein.The hydroxyl group on the naphthalimide fluorophore formed a hydrogen bond with the functional group near the protein cavity.The excited state proton transfer occurred after illumination,to obtain the ratio fluorescence signal from blue emission to red emission,realizing the wash-free fluorescence imaging of the target proteins.展开更多
Multiplex,rapid and accurate virus quantification plays a great value in biomedical detection.Here,a novel one step,wash-free immunoassay platform based bioinspired PhC barcodes for multiplexed virus quantification wa...Multiplex,rapid and accurate virus quantification plays a great value in biomedical detection.Here,a novel one step,wash-free immunoassay platform based bioinspired PhC barcodes for multiplexed virus quantification was explored.PhC barcodes were decorated with PDA by self-polymerization of DA,thus this nanocomposite hybridized PhC barcodes facilitated the adsorption of FITC labelled antibodies and quenched itself photolumines-cent,allowing a fast responsive composite platform.In the presence of target analyte,the FITC-labelled detection antibody was released from the surface of PDA decorated microcarrier to specifically bind to the target ana-lyte,thus recovered the photoluminescence.In addition,the PhC microcarrier was enabled to carry out various color barcode for different targets detection though tuning internal periodic structures.Based on these excellent performances of the nanocomposite barcode,this method can not only capture H1N1,H5N1,SARS-CoV-2 si-multaneously with rapid,accuracy but also accomplish multiplex quantification detection with high-sensitivity.Furthermore,our developed platform was also achieved with high-sensitivity and high-specificity through the verification of clinical samples,thus laying out a new avenue for multiplex virus detection in clinical diagnosis.展开更多
Protein labeling by using a protein tag and tag-specific fluorescent probes is increasingly becoming a useful technique for the real-time imaging of proteins in living cells. SNAP-tag as one of the most prominent fusi...Protein labeling by using a protein tag and tag-specific fluorescent probes is increasingly becoming a useful technique for the real-time imaging of proteins in living cells. SNAP-tag as one of the most prominent fusion tags has been widely used and already commercially available. Recently, various fluorogenic probes for SNAP-tag based protein labeling were reported. Owing to turn-on fluorescence response, fluorogenic probes for SNAP-tag minimize the fluorescence background caused by unreacted or nonspecifically bound probes and allow for direct imaging in living cells without wash-out steps. Thus,real-time analysis of protein localization, dynamics and interactions has been made possible by SNAP-tag fluorogenic probes. In this review,we describe the design strategies of fluorogenic probes for SNAP-tag and their applications in cellular protein labeling.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52003178,52273141 and 51973132)Natural Science Foundation of Sichuan Province(No.2023NSFSC0338)。
文摘Long-term fluorescence monitoring of subcellular organelles is crucial for cellular physiology and pathology studies.Lipid droplets(LDs)are increasingly recognized for their involvement in various biological processes,to influence disease development through diverse behaviors However,existing LD probes face challenges in achieving high targeting and long-term monitoring due to poor photostability and long-term phototoxicity.Carbon quantum dots(CQDs)have gained prominence due to their exceptional fluorescence properties,but their prevalent blue excitation wavelength presents difficulties for long-term imaging.Herein,we synthesized red-emissive carbon quantum dot(R-CQDs)with superior photobleaching resistance and red-emission,thus enabling harmlessly fluorescence monitoring of cells longer than3 h.In addition,R-CQD exhibits suitable amphiphilicity and remarkable solvatochromic effect,allowing rapid targeting to LDs for immediate imaging without cumbersome washing steps.Hence,R-CQD shows high performance for extended observation of dynamic LD behavior in various biological processes,which is confirmed by documenting the course of LDs during starvation as well as lipotoxicity.Compared to commercial probes,R-CQD extends live cell imaging time by at least 9-fold,facilitating the study of LD behavioral characteristics under diverse physiological or pathological conditions.This work provides a reliable fluorescence tool for tracking intercellular microenvironment dynamically thus to understand the divers biological or disease mechanism.
基金the National Natural Science Foundation of China(grant numbers:52003178 and 51973132)Intermnational Science and Technology Innovation Cooperation Foundation of Sichuan Province(grant number:2022YFH0086)Natural Science Foundation of Sichuan Province(grant number:2023NSFSC0338 and 2023NSFSC1067).
文摘Lipid droplets(LDs)participating in various cellular activities and are increasingly being emphasized.Fluorescence imaging provides powerful tool for dynamic tracking of LDs,however,most current LDs probes remain inconsistent performance such as low Photoluminescence Quantum Yield(PLQY),poor photostability and tedious washing procedures.Herein,a novel yellow-emissive carbon dot(OT-cD)has been synthesized conveniently with high PLQY up to 90%.Besides,OT-CD exhibits remarkable amphiphilicity and solvatochromic property with lipid-water partition coefficient higher than 2,which is much higher than most LDs probes.These characters enable OT-CD high brightness,stable and wash-free LDs probing,and feasible for in vivo imaging.Then,detailed observation of LDs morphological and polarity variation dynamically in different cellular states were recorded,including ferroptosis and other diseases processes.Furthermore,fast whole imaging of zebrafish and identifed LD enrichment in injured liver indicate its further feasibility for in vivo application.In contrast to the reported studies to date,this approach provides a versatile conventional synthesis system for high-performance LDs targeting probes,combing the advantages of easy and high-yield production,as well as robust brightness and stability for long-term imaging,facilitating investigations into organelle interactions and LD-associated diseases.
基金supported by the National Natural Science Foundation of China(Nos.22225806,22078314 and 22278394)Dalian Institute of Chemical Physics(Nos.DICPI202227 and DICPI202142)。
文摘Protein self-labeling tags achieve selective fusion and labeling of target proteins through genetic coding technology,but require exogenous fluorescent probes with fluorogenicity for protein tag binding to have the performance of wash-free fluorescence imaging in live cells.In this paper,we reported a fluorogenic probe 1 capable of ratiometric fluorescence recognition of SNAP-tag proteins.In this probe,the O6-benzylguanine derivative of 3-hydroxy-1,8-naphthalimide underwent a selective covalent linkage reaction with SNAP-tag protein.The hydroxyl group on the naphthalimide fluorophore formed a hydrogen bond with the functional group near the protein cavity.The excited state proton transfer occurred after illumination,to obtain the ratio fluorescence signal from blue emission to red emission,realizing the wash-free fluorescence imaging of the target proteins.
基金supported by the National Natural Science Foundation of China (82102511),the Natural Science Foundation of Jiangsu (BK20210021)the Research Project of Jiangsu Province Health Committee (M2021031)Clinical Trials from the Affiliated Drum Tower Hospital,Medical School of Nanjing University (2022-LCYJ-PY-05).
文摘Multiplex,rapid and accurate virus quantification plays a great value in biomedical detection.Here,a novel one step,wash-free immunoassay platform based bioinspired PhC barcodes for multiplexed virus quantification was explored.PhC barcodes were decorated with PDA by self-polymerization of DA,thus this nanocomposite hybridized PhC barcodes facilitated the adsorption of FITC labelled antibodies and quenched itself photolumines-cent,allowing a fast responsive composite platform.In the presence of target analyte,the FITC-labelled detection antibody was released from the surface of PDA decorated microcarrier to specifically bind to the target ana-lyte,thus recovered the photoluminescence.In addition,the PhC microcarrier was enabled to carry out various color barcode for different targets detection though tuning internal periodic structures.Based on these excellent performances of the nanocomposite barcode,this method can not only capture H1N1,H5N1,SARS-CoV-2 si-multaneously with rapid,accuracy but also accomplish multiplex quantification detection with high-sensitivity.Furthermore,our developed platform was also achieved with high-sensitivity and high-specificity through the verification of clinical samples,thus laying out a new avenue for multiplex virus detection in clinical diagnosis.
基金supports from the National Natural Science Foundation of China (Nos. 21422606 and 21502189)Dalian Cultivation Fund for Distinguished Young Scholars (Nos. 2014J11JH130 and 2015J12JH205)
文摘Protein labeling by using a protein tag and tag-specific fluorescent probes is increasingly becoming a useful technique for the real-time imaging of proteins in living cells. SNAP-tag as one of the most prominent fusion tags has been widely used and already commercially available. Recently, various fluorogenic probes for SNAP-tag based protein labeling were reported. Owing to turn-on fluorescence response, fluorogenic probes for SNAP-tag minimize the fluorescence background caused by unreacted or nonspecifically bound probes and allow for direct imaging in living cells without wash-out steps. Thus,real-time analysis of protein localization, dynamics and interactions has been made possible by SNAP-tag fluorogenic probes. In this review,we describe the design strategies of fluorogenic probes for SNAP-tag and their applications in cellular protein labeling.