In this paper, a learning and recognition approach is proposed for univariate time series composed of output measurements of general nonlinear dynamical systems. Firstly, a class of dynamical systems in the canonical ...In this paper, a learning and recognition approach is proposed for univariate time series composed of output measurements of general nonlinear dynamical systems. Firstly, a class of dynamical systems in the canonical form is derived to describe the univariate time series by introducing coordinate transformation. An observer-based deterministic learning technique is then adopted to achieve dynamical modeling of the associated transformed systems of the training univariate time series, and the modeling results in the form of radial basis function network (RBFN) models are stored in a pattern library. Subsequently, multiple observer-based dynamical estimators containing the RBFN models in the pattern library are constructed for a test univariate time series, and a recognition decision scheme is proposed by the derived recognition indicator. On this basis, more concise recognition conditions are provided, which is beneficial for verifying the recognition results. Finally, simulation studies on the Rossler system and aero-engine stall warning verify the effectiveness of the proposed approach.展开更多
基金supported by the National Postdoctoral Researcher Program of China(No.GZC20231451)the National Natural Science Foundation of China(Nos.61890922,62203263)the Shandong Province Natural Science Foundation(Nos.ZR2020ZD40,ZR2022QF062).
文摘In this paper, a learning and recognition approach is proposed for univariate time series composed of output measurements of general nonlinear dynamical systems. Firstly, a class of dynamical systems in the canonical form is derived to describe the univariate time series by introducing coordinate transformation. An observer-based deterministic learning technique is then adopted to achieve dynamical modeling of the associated transformed systems of the training univariate time series, and the modeling results in the form of radial basis function network (RBFN) models are stored in a pattern library. Subsequently, multiple observer-based dynamical estimators containing the RBFN models in the pattern library are constructed for a test univariate time series, and a recognition decision scheme is proposed by the derived recognition indicator. On this basis, more concise recognition conditions are provided, which is beneficial for verifying the recognition results. Finally, simulation studies on the Rossler system and aero-engine stall warning verify the effectiveness of the proposed approach.