期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
战争策略算法与变色龙算法优化极限学习机的输沙量时间序列预测 被引量:7
1
作者 许建伟 崔东文 《水力发电》 CAS 2022年第11期36-42,共7页
以云南省龙潭寨汛期与枯期输沙量时间序列预测为例,建立战争策略优化(WSO)算法、变色龙群算法(CSA)与极限学习机(ELM)相融合的组合模型。首先,在不同维度下选取4个基准函数对WSO、CSA进行仿真测试;其次,利用2层WPT将实例汛期与枯期输沙... 以云南省龙潭寨汛期与枯期输沙量时间序列预测为例,建立战争策略优化(WSO)算法、变色龙群算法(CSA)与极限学习机(ELM)相融合的组合模型。首先,在不同维度下选取4个基准函数对WSO、CSA进行仿真测试;其次,利用2层WPT将实例汛期与枯期输沙量时序数据分解为4个更具规律的子序列分量;最后,通过各分量训练样本构建ELM适应度函数,利用WSO、CSA对适应度函数进行寻优,利用寻优获得的最佳ELM超参数建立WPT-WSO-ELM、WPT-CSA-ELM模型对各子序列分量进行预测。将预测结果加和重构得到最终预测结果,并构建WPT-ELM模型及基于小波变换(WT)的WT-WSO-ELM、WT-CSA-ELM、WT-ELM模型作对比分析。对于基准函数及ELM适应度函数,WSO寻优效果优于CSA,具有较好的寻优精度及全局搜索能力;对汛期与枯期输沙量预测WPT-WSO-ELM模型预测精度优于WPT-CSA-ELM、WT-WSO-ELM、WT-CSA-ELM模型。 展开更多
关键词 输沙量预测 极限学习机 战争策略优化算法 变色龙群算法 小波包变换 仿真测试
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部