The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is...The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is 70000,typical of the cruise operating condition.The results of the investigations performed under steady and unsteady inflow conditions are analyzed.The unsteady investigations have been performed at the reduced frequency of f+=0.62,representative of the real engine operating condition.Profile aerodynamic loadings as well as boundary layer velocity profiles have been measured to survey the separation and transition processes.Spectral analysis has been also performed to better understand the phenomena associated with the transition process under steady inflow.For the unsteady case,a phase-locked ensemble averaging technique has been employed to reconstruct the time-resolved boundary layer velocity distributions from the hot-wire instantaneous signal output.The ensemble-averaging technique allowed a detailed analysis of the effects induced by incoming wakes-boundary layer interaction in separation suppression.Time-resolved results are presented in terms of mean velocity and unresolved unsteadiness time-space plots.展开更多
文摘The effects induced by the presence of incoming wakes on the boundary layer developing over a high-lift low-pressure turbine profile have been investigated in a linear cascade at mid-span.The tested Reynolds number is 70000,typical of the cruise operating condition.The results of the investigations performed under steady and unsteady inflow conditions are analyzed.The unsteady investigations have been performed at the reduced frequency of f+=0.62,representative of the real engine operating condition.Profile aerodynamic loadings as well as boundary layer velocity profiles have been measured to survey the separation and transition processes.Spectral analysis has been also performed to better understand the phenomena associated with the transition process under steady inflow.For the unsteady case,a phase-locked ensemble averaging technique has been employed to reconstruct the time-resolved boundary layer velocity distributions from the hot-wire instantaneous signal output.The ensemble-averaging technique allowed a detailed analysis of the effects induced by incoming wakes-boundary layer interaction in separation suppression.Time-resolved results are presented in terms of mean velocity and unresolved unsteadiness time-space plots.
文摘采用计算流体力学(Computational fluid dynamics,CFD)的方法模拟致动盘,研究了尾流边界的发展过程。为了准确捕捉尾流边界细节,根据尾流边界的速度梯度远远大于流场中的其他区域的速度梯度的特性,使用自适应弹簧网格技术,使网格的最密区域始终跟随尾流边界运动。基于该数值模拟结果建立了一个尾流边界模型。该模型将尾流的发展分为与粘性无关的膨胀过程和与粘性相关的扩散过程,建模结果与实验结果吻合。在此基础上,还利用该模型对高斯分布预测(Gaussian distribution prediction,GDP)尾流模型进行了修正,使其更加准确。