The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When ...The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.展开更多
为了研究柱体结构的涡激振动特性预测方法,首先基于Van der Pol尾流振子模型建立了弹性支撑单自由度柱体的涡激振动模型。然后基于计算流体力学(CFD)方法、结构动力学理论以及嵌套网格技术,同时考虑弹性支撑柱体来流向和横向振动,建立...为了研究柱体结构的涡激振动特性预测方法,首先基于Van der Pol尾流振子模型建立了弹性支撑单自由度柱体的涡激振动模型。然后基于计算流体力学(CFD)方法、结构动力学理论以及嵌套网格技术,同时考虑弹性支撑柱体来流向和横向振动,建立了柱体结构的涡激振动高保真仿真模型。通过与国外文献实验数据对比,验证了两种模型的准确性。计算结果表明,在低质量比情况下,Van der Pol尾流振子模型在约化速度较小区域计算误差很大,在柱体振幅最大值附近误差较小,基本上可以捕捉到柱体的涡激振动特性,可以用于工程上快速预测柱体结构的涡激振动特性;在低质量比、高质量比以及指定的约化速度范围内,采用CFD方法和嵌套网格技术,可以避免由于柱体振幅较大引起的网格畸变和负网格问题,且可以获得较好的计算精度和详细的流场信息,但计算效率相比Van der Pol尾流振子模型较低。展开更多
基金Supported by the National Natural Science Foundation of China (Grant No 10532070)the Knowledge Innovation Program of Chinese Academy of Sciences (Grant No KJCX2-YW-L07)the LNM Initial Funding for Young Investigators
文摘The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
文摘为了研究柱体结构的涡激振动特性预测方法,首先基于Van der Pol尾流振子模型建立了弹性支撑单自由度柱体的涡激振动模型。然后基于计算流体力学(CFD)方法、结构动力学理论以及嵌套网格技术,同时考虑弹性支撑柱体来流向和横向振动,建立了柱体结构的涡激振动高保真仿真模型。通过与国外文献实验数据对比,验证了两种模型的准确性。计算结果表明,在低质量比情况下,Van der Pol尾流振子模型在约化速度较小区域计算误差很大,在柱体振幅最大值附近误差较小,基本上可以捕捉到柱体的涡激振动特性,可以用于工程上快速预测柱体结构的涡激振动特性;在低质量比、高质量比以及指定的约化速度范围内,采用CFD方法和嵌套网格技术,可以避免由于柱体振幅较大引起的网格畸变和负网格问题,且可以获得较好的计算精度和详细的流场信息,但计算效率相比Van der Pol尾流振子模型较低。