In this paper, recent measurements of tip vortex flow with and without cavitation carried out in Cavitation Mechanism Tunnel of China Ship Scientific Research Center(CSSRC) are presented. The elliptic hydrofoil with...In this paper, recent measurements of tip vortex flow with and without cavitation carried out in Cavitation Mechanism Tunnel of China Ship Scientific Research Center(CSSRC) are presented. The elliptic hydrofoil with section NACA 662-415 was adopted as test model. High-speed video(HSV) camera was used to visualize the trajectory of tip vortex core and the form of tip vortex cavitation(TVC) in different cavitation situations. Laser Doppler velocimetry(LDV) was employed to measure the tip vortex flow field in some typical sections along the vortex trajectory with the case of cavitation free. Stereo particle image velocimetry(SPIV) system was used to measure the velocity and vorticity distributions with and without cavitation. Series measurement results such as velocity and vorticity distributions, the trajectory of tip vortex core, the vortex core radius, cavity size and cavitation inception number were obtained. The results demonstrated that the minimum pressure coefficient in the vortex core obtained by flow field measurement was quite coincident with the tip vortex cavitation inception number obtained under the condition of high incoming velocity and low air content. And TVC would decrease the vortex strength comparing with the case without cavitation.展开更多
Measurements were performed using Particle Image Velocimetry (PIV) to analyze the modification of flow by the combined effects of the rotation and the Reynolds number on the flow past two rotating circular cylinders...Measurements were performed using Particle Image Velocimetry (PIV) to analyze the modification of flow by the combined effects of the rotation and the Reynolds number on the flow past two rotating circular cylinders in a side-by-side-arrangement at a range of 425 〈 Re ≤ 1130,0 ≤α ≤4 ( α is the rotational speed) at one gap spacing of T / d = 1.11 (T and d are the distance between the centers of two cylinders and the cylinder diameter, respectively). A new Immersed-Lattice Boltzmann Method (ILBM) scheme was used to study the effect of the gap spacing on the flow. The results show that the vortex shedding is suppressed as rotational speed increases. The flow reaches a steady state when the vortex shedding for both cylinders is completely suppressed at critical rotational speed. As the rotational speed further increases, the separation phenomenon in the boundary layers disappears at the attachment rotational speed. The critical rotational speed and attachment rotational speed become small as Reynolds number increases. The absolute rotational speed of cylinders should be large at same critical rotational speed and attachment rotational speed in the case of large Reynolds number. The gap spacing has an important role in changing the pattern of vortex shedding. It is very different in the mechanism of vortex shedding suppression for the flows around two rotating cylinders and single rotating cylinder.展开更多
投弃式海流剖面仪(Expendable Current Profiler,XCP)周围流场是典型的旋转圆柱绕流。探头周围流场对探头的运动状态起决定性作用,这直接关系到探头的测量性能,因此有必要对旋转圆柱周围流场进行实验研究。实验在循环水槽中进行,通过PI...投弃式海流剖面仪(Expendable Current Profiler,XCP)周围流场是典型的旋转圆柱绕流。探头周围流场对探头的运动状态起决定性作用,这直接关系到探头的测量性能,因此有必要对旋转圆柱周围流场进行实验研究。实验在循环水槽中进行,通过PIV对雷诺数保持不变(Re=1000)、不同圆柱旋转速度比(α=0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5和5.0)的圆柱下游尾流场进行研究。通过选取不同旋转速度比的任一时刻的瞬态流场,来分析旋转对圆柱尾流结构的影响。为了获得流场的频率信息,对所获得流场信息进行能谱分析来获取涡旋的脱落频率,并进一步使用正交模态分解对流场进行分析,给出了流场主要拟序结构及其能量与转速比的变化趋势。发现圆柱旋转改变圆柱尾流结构,使尾迹尺度变小。在旋转速度比0≤α≤2.0时,存在明显的周期性涡旋脱落,并且涡旋脱落的频率有逐渐升高的趋势;而且当转速比2.0<α≤5.0时尾迹流场的周期性减弱,涡旋脱落变得不明显,流场表现出低频、剪切层的区域特征。随着转速变大,涡旋尺度变小。在较高旋转速度比时,流场中能量被重新分布。展开更多
Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on t...Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.展开更多
The vortex formation and entrainment characteristics for a round transverse jet in shallow water were experimentally investigated by means of a combination of LIF flow visualization and PIV measurement. A scarf vortex...The vortex formation and entrainment characteristics for a round transverse jet in shallow water were experimentally investigated by means of a combination of LIF flow visualization and PIV measurement. A scarf vortex wrapped around the main body of the jet is formed in the near-wall region due to the interaction between the resulting wall jet and sufficiently shallow crossflow, with some more or less unsteady flow properties and with spreading ranges as functions of both the velocity ratio and the water depth within the near field. The entrainment of the ambient crossflow fluid into the jet main body is closely associated with the time-evolving features of the shear layer between the jet and surrounding fluid as well as the induced vortical structures near the wall. In the case of slight impingement upon the wall, the interaction between the jet shear layer and the weak, unstable scarf vortex gives rise to an appreciable local entrainment enhancement, confined in the near-wall region in the vicinity of the stagnation point. While in the case of intense impingement upon the wall, the well-organized and stable scarf vortex gives rise to a greatly enhanced entrainment and a greatly increased lateral spreading rate nearly throughout the overall near field as compared to the conventional wall jet. In addition, the entrainment of the ambient crossflow fluid by the scarf vortex in this case occurs largely on the surface of the unique spiral roller structure by itself due to the presence of smaller and unorganized eddies, and accordingly the scarf vortex is likely to keep its spiral roller structure steadily to a relatively great downstream distance within the near field.展开更多
Vortex beams with orbital angular momentum play a crucial role in increasing the information capacity in optical communications.The magnitude of orbital angular momentum determines the ability of information encoding....Vortex beams with orbital angular momentum play a crucial role in increasing the information capacity in optical communications.The magnitude of orbital angular momentum determines the ability of information encoding.In practice,a vortex beam can encounter random objects or turbulence during free-space propagation,resulting in information damage.Therefore,accurately measuring the orbital angular momentum of a randomly fluctuated and obstructed vortex beam is a considerable challenge.Herein,we propose a single-shot method for the phase retrieval of a randomly fluctuated and obstructed vortex beam by combining the phase-shift theorem and self-reference holography.Experimental results reveal that the sign and magnitude of the initial orbital angular momentum can be simultaneously determined based on their quantitative relation with the number of coherence singularities on the observation plane,thus addressing the effects of random occlusion and atmospheric turbulence.The proposed method considerably improved the accurate decoding of orbital angular momentum information in nonideal freespace optical communications.展开更多
基金Project supported by the Key Project of National Natural Science Foundation of China(Grant No.11332009)
文摘In this paper, recent measurements of tip vortex flow with and without cavitation carried out in Cavitation Mechanism Tunnel of China Ship Scientific Research Center(CSSRC) are presented. The elliptic hydrofoil with section NACA 662-415 was adopted as test model. High-speed video(HSV) camera was used to visualize the trajectory of tip vortex core and the form of tip vortex cavitation(TVC) in different cavitation situations. Laser Doppler velocimetry(LDV) was employed to measure the tip vortex flow field in some typical sections along the vortex trajectory with the case of cavitation free. Stereo particle image velocimetry(SPIV) system was used to measure the velocity and vorticity distributions with and without cavitation. Series measurement results such as velocity and vorticity distributions, the trajectory of tip vortex core, the vortex core radius, cavity size and cavitation inception number were obtained. The results demonstrated that the minimum pressure coefficient in the vortex core obtained by flow field measurement was quite coincident with the tip vortex cavitation inception number obtained under the condition of high incoming velocity and low air content. And TVC would decrease the vortex strength comparing with the case without cavitation.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No.10632070)
文摘Measurements were performed using Particle Image Velocimetry (PIV) to analyze the modification of flow by the combined effects of the rotation and the Reynolds number on the flow past two rotating circular cylinders in a side-by-side-arrangement at a range of 425 〈 Re ≤ 1130,0 ≤α ≤4 ( α is the rotational speed) at one gap spacing of T / d = 1.11 (T and d are the distance between the centers of two cylinders and the cylinder diameter, respectively). A new Immersed-Lattice Boltzmann Method (ILBM) scheme was used to study the effect of the gap spacing on the flow. The results show that the vortex shedding is suppressed as rotational speed increases. The flow reaches a steady state when the vortex shedding for both cylinders is completely suppressed at critical rotational speed. As the rotational speed further increases, the separation phenomenon in the boundary layers disappears at the attachment rotational speed. The critical rotational speed and attachment rotational speed become small as Reynolds number increases. The absolute rotational speed of cylinders should be large at same critical rotational speed and attachment rotational speed in the case of large Reynolds number. The gap spacing has an important role in changing the pattern of vortex shedding. It is very different in the mechanism of vortex shedding suppression for the flows around two rotating cylinders and single rotating cylinder.
文摘投弃式海流剖面仪(Expendable Current Profiler,XCP)周围流场是典型的旋转圆柱绕流。探头周围流场对探头的运动状态起决定性作用,这直接关系到探头的测量性能,因此有必要对旋转圆柱周围流场进行实验研究。实验在循环水槽中进行,通过PIV对雷诺数保持不变(Re=1000)、不同圆柱旋转速度比(α=0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5和5.0)的圆柱下游尾流场进行研究。通过选取不同旋转速度比的任一时刻的瞬态流场,来分析旋转对圆柱尾流结构的影响。为了获得流场的频率信息,对所获得流场信息进行能谱分析来获取涡旋的脱落频率,并进一步使用正交模态分解对流场进行分析,给出了流场主要拟序结构及其能量与转速比的变化趋势。发现圆柱旋转改变圆柱尾流结构,使尾迹尺度变小。在旋转速度比0≤α≤2.0时,存在明显的周期性涡旋脱落,并且涡旋脱落的频率有逐渐升高的趋势;而且当转速比2.0<α≤5.0时尾迹流场的周期性减弱,涡旋脱落变得不明显,流场表现出低频、剪切层的区域特征。随着转速变大,涡旋尺度变小。在较高旋转速度比时,流场中能量被重新分布。
基金The work described in this paper was jointly supported by the National Natural Science Foundation of China (51478360, 51323013, and 50978204).
文摘Wind-tunnel tests of a large-scale sectional model with synchronous measurements of force and vibration responses were carried out to investigate the nonlinear behaviors of vertical vortex-induced forces (VIFs) on three typical box decks (i.e., fully closed box, centrally slotted box, and semi-closed box). The mechanisms of the onset, development, and self-limiting phenomenon of the vertical vortex-induced vibration (VlV) were also explored by analyzing the energy evolution of different vertical VIF components and their contributions to the vertical VIV responses. The results show that the nonlinear components of the vertical VIF often differ from deck to deck; the most important components of the vertical VIF, governing the stable amplitudes of the vertical VIV responses, are the linear and cubic components of velocity contained in the self-excited aerodynamic damping forces. The former provides a constant negative damping ratio to the vibration system and is thus the essential power driving the development of the VIV amplitude, while the latter provides a positive damping ratio proportional to the square of the vibration velocity and is actually the inherent factor making the VIV amplitude self-limiting. On these bases, a universal simplified nonlinear mathematical model of the vertical VIF on box decks of bridges is presented and verified in this paper; it can be used to predict the stable amplitudes of the vertical VIV of long-span bridges with satisfactory accuracy.
基金supported by the National Natural Science Foundation of China (Grant No. 10572084)the Shanghai Pujiang Program (Grant No. 08PJ14054)the Innovation Program of Shanghai Municipal Education Commission (Grant No. 09 YZ01)
文摘The vortex formation and entrainment characteristics for a round transverse jet in shallow water were experimentally investigated by means of a combination of LIF flow visualization and PIV measurement. A scarf vortex wrapped around the main body of the jet is formed in the near-wall region due to the interaction between the resulting wall jet and sufficiently shallow crossflow, with some more or less unsteady flow properties and with spreading ranges as functions of both the velocity ratio and the water depth within the near field. The entrainment of the ambient crossflow fluid into the jet main body is closely associated with the time-evolving features of the shear layer between the jet and surrounding fluid as well as the induced vortical structures near the wall. In the case of slight impingement upon the wall, the interaction between the jet shear layer and the weak, unstable scarf vortex gives rise to an appreciable local entrainment enhancement, confined in the near-wall region in the vicinity of the stagnation point. While in the case of intense impingement upon the wall, the well-organized and stable scarf vortex gives rise to a greatly enhanced entrainment and a greatly increased lateral spreading rate nearly throughout the overall near field as compared to the conventional wall jet. In addition, the entrainment of the ambient crossflow fluid by the scarf vortex in this case occurs largely on the surface of the unique spiral roller structure by itself due to the presence of smaller and unorganized eddies, and accordingly the scarf vortex is likely to keep its spiral roller structure steadily to a relatively great downstream distance within the near field.
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1404800,and 2019YFA0705000)the National Natural Science Foundation of China(Grant Nos.12174280,12204340,12192254,11974218,92250304,and 92050202)+1 种基金the China Postdoctoral Science Foundation(Grant No.2022M722325)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Key Lab of Modern Optical Technologies of Jiangsu Province(Grant No.KJS2138)。
文摘Vortex beams with orbital angular momentum play a crucial role in increasing the information capacity in optical communications.The magnitude of orbital angular momentum determines the ability of information encoding.In practice,a vortex beam can encounter random objects or turbulence during free-space propagation,resulting in information damage.Therefore,accurately measuring the orbital angular momentum of a randomly fluctuated and obstructed vortex beam is a considerable challenge.Herein,we propose a single-shot method for the phase retrieval of a randomly fluctuated and obstructed vortex beam by combining the phase-shift theorem and self-reference holography.Experimental results reveal that the sign and magnitude of the initial orbital angular momentum can be simultaneously determined based on their quantitative relation with the number of coherence singularities on the observation plane,thus addressing the effects of random occlusion and atmospheric turbulence.The proposed method considerably improved the accurate decoding of orbital angular momentum information in nonideal freespace optical communications.