The evolution of spiral-band-like structures triggered by asymmetric heating in three tropical-cyclone-like vortices of different intensities is examined using the Three-Dimensional Vortex Perturbation Analyzer and Si...The evolution of spiral-band-like structures triggered by asymmetric heating in three tropical-cyclone-like vortices of different intensities is examined using the Three-Dimensional Vortex Perturbation Analyzer and Simulator (3DVPAS) model. To simulate the spiral bands, asymmetric thermal perturbations are imposed on the radius of maximum wind (RMW) of vortices, which can be considered as the location near the eyewall of real tropical cyclones (TCs). All the three vortices experience a hydrostatic adjustment after the introduction of thermal asymmetries. It takes more time for weaker and stable vortices to finish such a process. The spiral-band-like structures, especially those distant from the vortex centers, form and evolve accompanying this process. In the quasi-balance state, the spiral bands are gradually concentrated to the inner core, the wave behavior of which resembles the features of classic vortex Rossby (VR) waves. The unstable vortices regain nonhydrostatic features after the quasi-balance stage. The spiral bands further from the vortex center, similar to distant spiral bands in real TCs, form and maintain more easily in the moderate basic-state vortex, satisfying the conditions of barotropic instability. The widest radial extent and longest-lived distant bands always exist in weak and stable vortices. This study represents an attempt to determine the role of TC intensity and stability in the formation and evolution of spiral bands via hydrostatic balance adjustment, and provides some valuable insights into the formation of distant spiral rainbands.展开更多
利用多重尺度摄动法,推导出非线性涡旋Rossby波波包的演变方程是非线性Schr d inger方程。对该非线性Schr d inger方程的周期波动解及其稳定性进行了研究,得到了有关稳定和不稳定的判据。数值计算表明:非线性涡旋Rossby波的相速值为100...利用多重尺度摄动法,推导出非线性涡旋Rossby波波包的演变方程是非线性Schr d inger方程。对该非线性Schr d inger方程的周期波动解及其稳定性进行了研究,得到了有关稳定和不稳定的判据。数值计算表明:非线性涡旋Rossby波的相速值为100m/s量级,这和台风中的螺旋雨带实测移速的量级是一致的,可以从涡旋Rossby波说中较好地解释台风中的螺旋雨带的形成和维持。展开更多
Vortex solitons with a ring vortex core residing in a single lattice site in the semi-infinite gap of square optical lattices are reported. These solitons are no longer bound states of the Bloch-wave unit (Bloch-wave...Vortex solitons with a ring vortex core residing in a single lattice site in the semi-infinite gap of square optical lattices are reported. These solitons are no longer bound states of the Bloch-wave unit (Bloch-wave distribution in one lattice site) at the band edge of the periodic lattice, and consequently they do not bifurcate from the corresponding band edge. For saturable nonlinearity, one family of such solitons is found, and its existing curve forms a closed loop, which is very surprising. For Kerr nonlinearity, two families of such vortex solitons are found.展开更多
At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate...At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate quicker because of decay due to air turbulence or be transported out of the way on oncoming traffic by cross-wind, yet wake turbulence separation minima do not take into account wind conditions. Indeed, for safety reasons, most airports assume a worst-case scenario and use conservative separations; the interval between aircraft taking off or landing therefore often amounts to several minutes. However, with the aid of accurate wind data and precise measurements of wake vortex by radar sensors, more efficient intervals can be set, particularly when weather conditions are stable. Depending on traffic volume, these adjustments can generate capacity gains, which have major commercial benefits. This paper presents the use of Electronic scanning radar for detecting wake vortices. In this method, the raindrops Doppler spectrogram is used to retrieve the strength of the wake vortex. Numerical simulation are performed to establish an empirical model used during the retrieval method. This paper presents also the results obtained during the trials of the PARIS-CDG data set recorded from October 2014 to November 2015 with an X-band RADAR developed and deployed by THALES.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.40905021, 41375049 and 41275099)the Chinese Postdoctoral Science Foundation (Grant No.2011M500894)the R&D Special Fund for Public Welfare Industry (meteorology) (Grant No.GYHY201206005)
文摘The evolution of spiral-band-like structures triggered by asymmetric heating in three tropical-cyclone-like vortices of different intensities is examined using the Three-Dimensional Vortex Perturbation Analyzer and Simulator (3DVPAS) model. To simulate the spiral bands, asymmetric thermal perturbations are imposed on the radius of maximum wind (RMW) of vortices, which can be considered as the location near the eyewall of real tropical cyclones (TCs). All the three vortices experience a hydrostatic adjustment after the introduction of thermal asymmetries. It takes more time for weaker and stable vortices to finish such a process. The spiral-band-like structures, especially those distant from the vortex centers, form and evolve accompanying this process. In the quasi-balance state, the spiral bands are gradually concentrated to the inner core, the wave behavior of which resembles the features of classic vortex Rossby (VR) waves. The unstable vortices regain nonhydrostatic features after the quasi-balance stage. The spiral bands further from the vortex center, similar to distant spiral bands in real TCs, form and maintain more easily in the moderate basic-state vortex, satisfying the conditions of barotropic instability. The widest radial extent and longest-lived distant bands always exist in weak and stable vortices. This study represents an attempt to determine the role of TC intensity and stability in the formation and evolution of spiral bands via hydrostatic balance adjustment, and provides some valuable insights into the formation of distant spiral rainbands.
文摘利用多重尺度摄动法,推导出非线性涡旋Rossby波波包的演变方程是非线性Schr d inger方程。对该非线性Schr d inger方程的周期波动解及其稳定性进行了研究,得到了有关稳定和不稳定的判据。数值计算表明:非线性涡旋Rossby波的相速值为100m/s量级,这和台风中的螺旋雨带实测移速的量级是一致的,可以从涡旋Rossby波说中较好地解释台风中的螺旋雨带的形成和维持。
基金Project supported by the National Natural Science Foundation of China (Grant No. 10904009)the Fundamental Research Funds for the Central Universities(Grant Nos. ZYGX2011J039 and ZYGX2011J047)
文摘Vortex solitons with a ring vortex core residing in a single lattice site in the semi-infinite gap of square optical lattices are reported. These solitons are no longer bound states of the Bloch-wave unit (Bloch-wave distribution in one lattice site) at the band edge of the periodic lattice, and consequently they do not bifurcate from the corresponding band edge. For saturable nonlinearity, one family of such solitons is found, and its existing curve forms a closed loop, which is very surprising. For Kerr nonlinearity, two families of such vortex solitons are found.
文摘At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate quicker because of decay due to air turbulence or be transported out of the way on oncoming traffic by cross-wind, yet wake turbulence separation minima do not take into account wind conditions. Indeed, for safety reasons, most airports assume a worst-case scenario and use conservative separations; the interval between aircraft taking off or landing therefore often amounts to several minutes. However, with the aid of accurate wind data and precise measurements of wake vortex by radar sensors, more efficient intervals can be set, particularly when weather conditions are stable. Depending on traffic volume, these adjustments can generate capacity gains, which have major commercial benefits. This paper presents the use of Electronic scanning radar for detecting wake vortices. In this method, the raindrops Doppler spectrogram is used to retrieve the strength of the wake vortex. Numerical simulation are performed to establish an empirical model used during the retrieval method. This paper presents also the results obtained during the trials of the PARIS-CDG data set recorded from October 2014 to November 2015 with an X-band RADAR developed and deployed by THALES.