The design consideration and implementation of a CMOS frequency synthesizer for the portable hybrid global navigation satellite system are presented. The large tuning range is achieved by tuning curve compensation usi...The design consideration and implementation of a CMOS frequency synthesizer for the portable hybrid global navigation satellite system are presented. The large tuning range is achieved by tuning curve compensation using an improved VCO resonant tank, which reduces the power consumption and obtains better phase noise performance. The circuit is validated by simulations and fabricated in a standard 0.18 μm 1P6M CMOS process. Close-loop phase noise measured is lower than -95 dBc at 200 kHz offset while the measured ttming range is 21.5% from 1.47 to 1.83 GHz. The proposed synthesizer including source coupled logic prescaler consumes 6.2 mA current from 1.8 V supply. The whole silicon required is only 0.53 mm2.展开更多
Based on the devised system-level design methodology, a 2.5-Gb/s monolithic bang-bang phase-locked clock and data recovery (CDR) circuit has been designed and fabricated in SMIC's 0.18-μm CMOS technology. The Pott...Based on the devised system-level design methodology, a 2.5-Gb/s monolithic bang-bang phase-locked clock and data recovery (CDR) circuit has been designed and fabricated in SMIC's 0.18-μm CMOS technology. The Pottbiicker phase frequency detector and a differential 4-stage inductorless ring VCO are adopted, where an additional current source is added to the VCO cell to improve the linearity of the VCO characteristic. The CDR has an active area of 340 × 440μm2, and consumes a power of only about 60 mW from a 1.8 V supply voltage, with an input sensitivity of less than 25 mV, and an output single-ended swing of more than 300 mV. It has a pull-in range of 800 MHz, and a phase noise of-111.54 dBc/Hz at 10 kHz offset. The CDR works reliably at any input data rate between 1.8 Gb/s and 2.6 Gb/s without any need for reference clock, off-chip tuning, or external components.展开更多
A 1.2 GHz frequency synthesizer integrated in a RF receiver for Beidou navigation is implemented in standard 0.18μm CMOS technology.A distributed biased varactor LC voltage-controlled oscillator is employed to achiev...A 1.2 GHz frequency synthesizer integrated in a RF receiver for Beidou navigation is implemented in standard 0.18μm CMOS technology.A distributed biased varactor LC voltage-controlled oscillator is employed to achieve low tuning sensitivity and optimized phase noise performance.A high-speed and low-switching-noise divider-by-2 circuit based on a source-coupled logic structure is adopted to generate a quadrature(I/Q) local oscillating signal.A high-speed 8/9 dual-modulus prescaler(DMP),a programmable-delay phase frequency detector without dead-zone problem,and a programmable-current charge pump are also integrated into the frequency synthesizer. The frequency synthesizer demonstrates an output frequency from 1.05 to 1.30 GHz,and the phase noise is-98.53 dBc/Hz at 100-kHz offset and -121.92 dBc/Hz at 1-MHz offset from the carrier frequency of 1.21 GHz. The power dissipation of the core circuits without the output buffer is 9.8 mW from a 1.8 V power supply.The total area of the receiver is 2.4×1.6 mm^2.展开更多
A 5-Gb/s 2 : 1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS tech...A 5-Gb/s 2 : 1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 × 780 μm^2. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.展开更多
The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to...The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.展开更多
基金supported by the National High Technology Research and Development Program of China(No.2007AA12Z344).
文摘The design consideration and implementation of a CMOS frequency synthesizer for the portable hybrid global navigation satellite system are presented. The large tuning range is achieved by tuning curve compensation using an improved VCO resonant tank, which reduces the power consumption and obtains better phase noise performance. The circuit is validated by simulations and fabricated in a standard 0.18 μm 1P6M CMOS process. Close-loop phase noise measured is lower than -95 dBc at 200 kHz offset while the measured ttming range is 21.5% from 1.47 to 1.83 GHz. The proposed synthesizer including source coupled logic prescaler consumes 6.2 mA current from 1.8 V supply. The whole silicon required is only 0.53 mm2.
基金supported by the National High Technology Research and Development Program of China(No.2007AA01Z2a5)the National Natural Science Foundation of China(No.60806027).
文摘Based on the devised system-level design methodology, a 2.5-Gb/s monolithic bang-bang phase-locked clock and data recovery (CDR) circuit has been designed and fabricated in SMIC's 0.18-μm CMOS technology. The Pottbiicker phase frequency detector and a differential 4-stage inductorless ring VCO are adopted, where an additional current source is added to the VCO cell to improve the linearity of the VCO characteristic. The CDR has an active area of 340 × 440μm2, and consumes a power of only about 60 mW from a 1.8 V supply voltage, with an input sensitivity of less than 25 mV, and an output single-ended swing of more than 300 mV. It has a pull-in range of 800 MHz, and a phase noise of-111.54 dBc/Hz at 10 kHz offset. The CDR works reliably at any input data rate between 1.8 Gb/s and 2.6 Gb/s without any need for reference clock, off-chip tuning, or external components.
文摘A 1.2 GHz frequency synthesizer integrated in a RF receiver for Beidou navigation is implemented in standard 0.18μm CMOS technology.A distributed biased varactor LC voltage-controlled oscillator is employed to achieve low tuning sensitivity and optimized phase noise performance.A high-speed and low-switching-noise divider-by-2 circuit based on a source-coupled logic structure is adopted to generate a quadrature(I/Q) local oscillating signal.A high-speed 8/9 dual-modulus prescaler(DMP),a programmable-delay phase frequency detector without dead-zone problem,and a programmable-current charge pump are also integrated into the frequency synthesizer. The frequency synthesizer demonstrates an output frequency from 1.05 to 1.30 GHz,and the phase noise is-98.53 dBc/Hz at 100-kHz offset and -121.92 dBc/Hz at 1-MHz offset from the carrier frequency of 1.21 GHz. The power dissipation of the core circuits without the output buffer is 9.8 mW from a 1.8 V power supply.The total area of the receiver is 2.4×1.6 mm^2.
基金Project supported by the National High Technology Research and Development Program of China (Nos.2007AA01Z2a5,2006AA01Z239)
文摘A 5-Gb/s 2 : 1 MUX (multiplexer) with an on-chip integrated clock extraction circuit which possesses the function of automatic phase alignment (APA), has been designed and fabricated in SMIC's 0.18 μm CMOS technology. The chip area is 670 × 780 μm^2. At a single supply voltage of 1.8 V, the total power consumption is 112 mW with an input sensitivity of less than 50 mV and an output single-ended swing of above 300 mV. The measurement results show that the IC can work reliably at any input data rate between 1.8 and 2.6 Gb/s with no need for external components, reference clock, or phase alignment between data and clock. It can be used in a parallel optic-fiber data interconnecting system.
文摘The wideband CMOS voltage-controlled oscillator(VCO)with low phase noise and low power consumption is presented for a DRM/DAB(digital radio mondiale and digital audio broadcasting)frequency synthesizer.In order to obtain a wide band and a large tuning range,a parallel switched capacitor bank is added in the LC tank.The proposed VCO is implemented in SMIC 0.18-μm RF CMOS technology and the chip area is 750 μm×560 μm,including the test buffer circuit and the pads.Measured results show that the tuning range is 44.6%;i.e.,the frequency turning range is from 2.27 to 3.57 GHz.The measured phase noise is-122.22 dBc/Hz at a 1 MHz offset from the carrier.The maximum power consumption of the core part is 6.16 mW at a 1.8 V power supply.