New anatomical features revealed in some Early Cambrian calcareous microfossils suggest comparison with Rhodophyta (red algae), which makes it possible to define their taxonomic position. A taxonomically rich Early Ca...New anatomical features revealed in some Early Cambrian calcareous microfossils suggest comparison with Rhodophyta (red algae), which makes it possible to define their taxonomic position. A taxonomically rich Early Cambrian paleobiocoenosis has been discovered in northern Tien Shan, which exemplifies the existence on earth at 535-513 Ma (million years) of morphologically complex fungiform microorganisms and red algae in a shallow-water biotope where environmental conditions favorable for life were created as a result of submarine volcanic eruptions.展开更多
A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, resp...A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part 展开更多
The metavolcanic rocks of greenschist fades developed at Heigouxia Valley in the Mian-Lue tectonic zone, South Qinling orogenic belt is a bimodal volcanic series. It is composed of K-poor, Na-rich tholeiite and dacite...The metavolcanic rocks of greenschist fades developed at Heigouxia Valley in the Mian-Lue tectonic zone, South Qinling orogenic belt is a bimodal volcanic series. It is composed of K-poor, Na-rich tholeiite and dacite-rhyolite. The trace elements characteristics with flat REE pattern of these tholeiites are similar to those of MORB. The Sm-Nd whole rock isochron age of(242±21) Ma and Rb-Sr whole rock isochron age of (221±13) Ma of this metavolcanic series consistently indicate their rnetamorphic time. Their relatively high initial εNd value of +6.1 at the rnetamorphic age (242 Ma) suggest that the volcanic rocks were derived from a depleted MORB type mantle source. Their trace elements and Nd isotope compositions suggest an oceanic basin developed from a rift on the continental margin of the Yangtze Block during the late Paleozoic and closed in the Triassic, This is the first case clearly showing the existence of relict of late Paleozoic oceanic crust in Fast Qinling belt, which provides important evidence for the Mian-Lue tectonic zone as a structure zone.展开更多
文摘New anatomical features revealed in some Early Cambrian calcareous microfossils suggest comparison with Rhodophyta (red algae), which makes it possible to define their taxonomic position. A taxonomically rich Early Cambrian paleobiocoenosis has been discovered in northern Tien Shan, which exemplifies the existence on earth at 535-513 Ma (million years) of morphologically complex fungiform microorganisms and red algae in a shallow-water biotope where environmental conditions favorable for life were created as a result of submarine volcanic eruptions.
文摘A zircon U-Pb geochronological study on the volcanic rocks reveals that both of the Zhangjiakou and Yixian Formations, northern Hebei Province, are of the Early Cretaceous, with ages of 135-130 Ma and 129-120 Ma, respectively. It is pointed out that the ages of sedimentary basins and volcanism in the northern Hebei -western Liaoning area become younger from west to east, i. e. the volcanism of the Luanping Basin commenced at c. 135 Ma, the Luotuo Mount area of the Chengde Basin c. 130 Ma, and western Liaoning c. 128 Ma. With a correlation of geochronological stratigraphy and biostratigraphy, we deduce that the Xing'anling Group, which comprises the Great Hinggan Mountains volcanic rock belt in eastern China, is predominantly of the early-middle Early Cretaceous, while the Jiande and Shimaoshan Groups and their equivalents, which form the volcanic rock belt in the southeastern coast area of China, are of the mid-late Early Cretaceous, and both the Jehol and Jiande Biotas are of the Early Cretaceous, not Late Jurassic or Late Jurassic-Early Cretaceous. Combining the characteristics of the volcanic rocks and, in a large area, hiatus in the strata of the Late Jurassic or Late Jurassic-early Early Cretaceous between the formations mentioned above and the underlying sequences, we can make the conclusion that, in the Late Jurassic-early Early Cretaceous, the eastern China region was of high relief or plateau, where widespread post-orogenic volcanic series of the Early Cretaceous obviously became younger from inland in the west to continental margin in the east. This is not the result of an oceanward accretion of the subduction belt between the Paleo-Pacific ocean plate and the Asian continent, but rather reflects the extension feature, i.e. after the closure of the Paleo-Pacific ocean, the Paleo-Pacific ancient continent collided with the Asian continent and reached the peak of orogenesis, and then the compression waned and resulted in the retreating of the post-orogenic extension from outer orogenic zone to inner part
基金Project supported by the National Natural Science Foundation of China.
文摘The metavolcanic rocks of greenschist fades developed at Heigouxia Valley in the Mian-Lue tectonic zone, South Qinling orogenic belt is a bimodal volcanic series. It is composed of K-poor, Na-rich tholeiite and dacite-rhyolite. The trace elements characteristics with flat REE pattern of these tholeiites are similar to those of MORB. The Sm-Nd whole rock isochron age of(242±21) Ma and Rb-Sr whole rock isochron age of (221±13) Ma of this metavolcanic series consistently indicate their rnetamorphic time. Their relatively high initial εNd value of +6.1 at the rnetamorphic age (242 Ma) suggest that the volcanic rocks were derived from a depleted MORB type mantle source. Their trace elements and Nd isotope compositions suggest an oceanic basin developed from a rift on the continental margin of the Yangtze Block during the late Paleozoic and closed in the Triassic, This is the first case clearly showing the existence of relict of late Paleozoic oceanic crust in Fast Qinling belt, which provides important evidence for the Mian-Lue tectonic zone as a structure zone.