In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational princi...In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational principle is obtained in a convolutionbilinear form. For application the problems of free vibration, forcedvibration and stability of a viscoelastic simply-supportedrectangular thin plate are considered. The results show thatnumerical solutions agree well with analytical solutions.展开更多
Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of visco...Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.展开更多
Based on the Boltzmann’s superposition principles of linear viscoelastic materials and the von K*-rm*-n’s hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelas...Based on the Boltzmann’s superposition principles of linear viscoelastic materials and the von K*-rm*-n’s hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.展开更多
基金the National Natural Science Foundation of China (No.19772027)the Shanghai Municipal Development Foundation of Science and Technology(No.98JC14032)
文摘In this paper, in the light of the Boltzmann superpositionprinciple in linear viscoelastic- ity, a mathematical model ofperturbed motion on viscoelastic thin place is established. Thecorre- sponding variational principle is obtained in a convolutionbilinear form. For application the problems of free vibration, forcedvibration and stability of a viscoelastic simply-supportedrectangular thin plate are considered. The results show thatnumerical solutions agree well with analytical solutions.
文摘Based on the Boltzmann's superposition principles of linear viscoelastic materials and the von Karman's hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.
文摘Based on the Boltzmann’s superposition principles of linear viscoelastic materials and the von K*-rm*-n’s hypotheses of thin plates with large deflections, a mathematical model for quasi-static problems of viscoelastic thin plates was given. By the Galerkin method in spatial domain, the original integro-partial-differential system could be transformed into an integral system. The latter further was reduced to a differential system by using the new method for temporal domain presented in this paper. Numerical results show that compared with the ordinary finite difference method, the new method in this paper is simpler to operate and has some advantages, such as, no storage and quicker computational speed etc.