There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of tra...There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of train-track time-variant system is put forward. Each vehicle is modeled as a multi-body system with 26 degrees of freedomand the action of coupler is also considered. The track structure is modeled as an assembly of track elements with 30degrees of freedom, then the spatially coupling vibration matrix equation of the train-track time-variant system is es-tablished on the basis of the principle of total potential energy with stationary value and the "set-in-right-position"rule. The track vertical geometric irregularity is considered as the excitation source of the vertical vibration of thesystem, and the hunting wave of car bogie frame is taken as the excitation source of lateral vibration of the system.The spatially coupling vibration matrix equation of the system is solved by Wilson-θ direct integration method. Theapproximation of the calculated results to the spot test results demonstrates the feasibility and effectiveness of thepresented analysis method. Finally, some other vibration responses of the system are also obtained.展开更多
Due to extensitve application of bridge structure on high speed railway line, it is necessary to consider comprehensively the common effect of the train, the track and the bridge. By forming an integrated large system...Due to extensitve application of bridge structure on high speed railway line, it is necessary to consider comprehensively the common effect of the train, the track and the bridge. By forming an integrated large system including the car and locomotive system, track system, bridge structure system and making use the interaction of the wheel/rail as the ″link″ between these systems, the study focuses on the coupling dynamic analysis of the train, the track and the bridge. Based on the summary and digestion of the predecessor′s research experiences, this article studies the coupling vibration of the train, the track and the bridge structure system on the high speed railway line. It covers the following: 1. Establishment of a more completed dynamic analysis model for cars and locomotives: the four axle car with two level suspension is used for the study and a space vibration analysis model constituting of such rigid bodies as carbody, bogie frame and wheelset is built. There are totally 31 degree of freedom, i e, 5 for the carbody and the front and rear bogie respectively, including horizontal movement, bounce, roll, pitch and yaw, 4 for each wheelset, including horizontal movement, bounce, roll and yaw. In the wheelset movement equation, the previous assumption that the wheelset always keep rigid contact with track in the car bridge coupling analysis has been corrected. The wheelset is allowed to leave the track, i e, ″jump on rail″. The degree of freedom of the wheelset has increased from horizontal movement and yaw, 2 in total, to horizontal movement, bounce, roll, and yaw, 4 in total. The degree of freedom for the car model has increased from 23 to 31. 2.Establishment of track structure dynamic analysis model of the multi layer supporting system aiming at ballasted track bridge of multiple spans for the first time: in accordance with the type and characteristics of different track structure and their models and aiming at the most common used ballasted track, the study selected the continuous elastic Eule展开更多
基金Project (50078006) supported by the National Natural Science Foundation of China Project (2001G029) supported by the Foundation of the Science and Technology Section of the Railway Bureau
文摘There exist three problems in the calculation of lateral vibration of the train-track time-variant system athome and abroad and the method to solve them is presented. Spatially coupling vibration analysis model of train-track time-variant system is put forward. Each vehicle is modeled as a multi-body system with 26 degrees of freedomand the action of coupler is also considered. The track structure is modeled as an assembly of track elements with 30degrees of freedom, then the spatially coupling vibration matrix equation of the train-track time-variant system is es-tablished on the basis of the principle of total potential energy with stationary value and the "set-in-right-position"rule. The track vertical geometric irregularity is considered as the excitation source of the vertical vibration of thesystem, and the hunting wave of car bogie frame is taken as the excitation source of lateral vibration of the system.The spatially coupling vibration matrix equation of the system is solved by Wilson-θ direct integration method. Theapproximation of the calculated results to the spot test results demonstrates the feasibility and effectiveness of thepresented analysis method. Finally, some other vibration responses of the system are also obtained.
文摘Due to extensitve application of bridge structure on high speed railway line, it is necessary to consider comprehensively the common effect of the train, the track and the bridge. By forming an integrated large system including the car and locomotive system, track system, bridge structure system and making use the interaction of the wheel/rail as the ″link″ between these systems, the study focuses on the coupling dynamic analysis of the train, the track and the bridge. Based on the summary and digestion of the predecessor′s research experiences, this article studies the coupling vibration of the train, the track and the bridge structure system on the high speed railway line. It covers the following: 1. Establishment of a more completed dynamic analysis model for cars and locomotives: the four axle car with two level suspension is used for the study and a space vibration analysis model constituting of such rigid bodies as carbody, bogie frame and wheelset is built. There are totally 31 degree of freedom, i e, 5 for the carbody and the front and rear bogie respectively, including horizontal movement, bounce, roll, pitch and yaw, 4 for each wheelset, including horizontal movement, bounce, roll and yaw. In the wheelset movement equation, the previous assumption that the wheelset always keep rigid contact with track in the car bridge coupling analysis has been corrected. The wheelset is allowed to leave the track, i e, ″jump on rail″. The degree of freedom of the wheelset has increased from horizontal movement and yaw, 2 in total, to horizontal movement, bounce, roll, and yaw, 4 in total. The degree of freedom for the car model has increased from 23 to 31. 2.Establishment of track structure dynamic analysis model of the multi layer supporting system aiming at ballasted track bridge of multiple spans for the first time: in accordance with the type and characteristics of different track structure and their models and aiming at the most common used ballasted track, the study selected the continuous elastic Eule