A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or...A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.展开更多
控制力矩陀螺群(Control moment gyroscopes,CMGs)作为姿态控制执行机构被广泛应用,但是自身的高频振动特性直接影响星体的姿态精度和稳定度。为能有效地提高星体的姿态精度和稳定度,通过使用六自由度隔振平台处理CMGs产生的高频振动,...控制力矩陀螺群(Control moment gyroscopes,CMGs)作为姿态控制执行机构被广泛应用,但是自身的高频振动特性直接影响星体的姿态精度和稳定度。为能有效地提高星体的姿态精度和稳定度,通过使用六自由度隔振平台处理CMGs产生的高频振动,并对隔振平台的应用进行多任务要求下的协调性研究。建立含有隔振系统和挠性帆板的整星动力学模型,通过对模型的合理简化,得出隔振平台的传递函数特性;分析其和姿态控制系统以及挠性部件相互之间的影响,并得到隔振平台参数设计的约束指标;根据约束指标对隔振平台重要参数进行理论上的设计,并通过数值仿真验证所设计参数的合理性;将所设计的隔振平台运用到整星中,对整星姿态精度和稳定度进行预测,以分析加入隔振平台后,对整星姿态控制精度和稳定度的影响。展开更多
基金supported by National Natural Science Foundation of China (Grant No. 60674097, Grant No. 60804018)Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education in Chongqing University of China, and Chongqing Municipal Natural Science Foundation of China (Grant No. 2008BB2407, Grant No. 2009AC3079, Grant No. 2009BB3416)
文摘A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.
文摘控制力矩陀螺群(Control moment gyroscopes,CMGs)作为姿态控制执行机构被广泛应用,但是自身的高频振动特性直接影响星体的姿态精度和稳定度。为能有效地提高星体的姿态精度和稳定度,通过使用六自由度隔振平台处理CMGs产生的高频振动,并对隔振平台的应用进行多任务要求下的协调性研究。建立含有隔振系统和挠性帆板的整星动力学模型,通过对模型的合理简化,得出隔振平台的传递函数特性;分析其和姿态控制系统以及挠性部件相互之间的影响,并得到隔振平台参数设计的约束指标;根据约束指标对隔振平台重要参数进行理论上的设计,并通过数值仿真验证所设计参数的合理性;将所设计的隔振平台运用到整星中,对整星姿态精度和稳定度进行预测,以分析加入隔振平台后,对整星姿态控制精度和稳定度的影响。