The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great...The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.展开更多
To reduce additional mass, this work proposes a nonlinear energy sink(NES)with an inertial amplifier(NES-IA) to control the vertical vibration of the objects under harmonic and shock excitations. Moreover, this paper ...To reduce additional mass, this work proposes a nonlinear energy sink(NES)with an inertial amplifier(NES-IA) to control the vertical vibration of the objects under harmonic and shock excitations. Moreover, this paper constructs pure nonlinear stiffness without neglecting the gravity effect of the oscillator. Both analytical and numerical methods are used to evaluate the performance of the NES-IA. The research findings indicate that even if the actual mass is 1% of the main oscillator, the NES-IA with proper inertia angles and mass distribution ratios can still effectively attenuate the steady-state and transient responses of the main oscillator. Nonlinear stiffness and damping also have important effects. Due to strongly nonlinear factors, the coupled system may exhibit higher branch responses under harmonic excitation. In shock excitation environment, the NES-IA with a large dynamic mass can trigger energy capture of both main resonance and high-frequency resonance. Furthermore, the comparison with the traditional NES also confirms the advantages of the NES-IA in overcoming mass dependence.展开更多
Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applicati...Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applications of a micro-electro-mechanical system(MEMS). However, the ambient vibration is always too weak to hinder the high energy conversion efficiency. In this paper, the integrated frame composed of piezoelectric beams and mechanical amplifiers is proposed to improve the energy conversion efficiency of a VEH. First, the initial structures of a piezoelectric frame(PF) and an amplification frame(AF) are designed. The dynamic model is then established to analyze the influence of key structural parameters on the mechanical amplification factor. Finite element simulation is conducted to study the energy harvesting performance, where the stiffness characteristics and power output in the cases of series and parallel load resistance are discussed in detail. Furthermore, piezoelectric beams with variable cross-sections are introduced to optimize and improve the energy harvesting efficiency. Advantages of the PF with the AF are illustrated by comparison with conventional piezoelectric cantilever beams. The results show that the proposed integrated VEH has a good mechanical amplification capability and is more suitable for low-frequency vibration conditions.展开更多
基金supported by National Natural Science Foundation of China(Grant No.51675440)Fundamental Research Funds for the Central Universities of China(Grant no.3102018gxc025)
文摘The problem of chatter vibration is associated with adverse consequences that often lead to tool impairment and poor surface finished in a workpiece, and thus, controlling or suppressing chatter vibrations is of great significance to improve machining quality. In this paper, a workpiece and an actuator dynamics are considered in modeling and controller design. A proportional-integral controller(PI) is presented to control and actively damp the chatter vibration of a workpiece in the milling process. The controller is chosen on the basis of its highly stable output and a smaller amount of steady-state error. The controller is realized using analog operational amplifier circuit. The work has contributed to planning a novel approach that addresses the problem of chatter vibration in spite of technical hitches in modeling and controller design. The method can also lead to considerable reduction in vibrations and can be beneficial in industries in term of cost reduction and energy saving. The application of this method is verified using active damping device actuator(ADD) in the milling of steel.
基金Project supported by the National Natural Science Foundation of China (Nos. 12172014 and11972050)the Key Laboratory of Vibration and Control of Aero-Propulsion System (Northeastern University),Ministry of Education of China (No. VCAME 202004)。
文摘To reduce additional mass, this work proposes a nonlinear energy sink(NES)with an inertial amplifier(NES-IA) to control the vertical vibration of the objects under harmonic and shock excitations. Moreover, this paper constructs pure nonlinear stiffness without neglecting the gravity effect of the oscillator. Both analytical and numerical methods are used to evaluate the performance of the NES-IA. The research findings indicate that even if the actual mass is 1% of the main oscillator, the NES-IA with proper inertia angles and mass distribution ratios can still effectively attenuate the steady-state and transient responses of the main oscillator. Nonlinear stiffness and damping also have important effects. Due to strongly nonlinear factors, the coupled system may exhibit higher branch responses under harmonic excitation. In shock excitation environment, the NES-IA with a large dynamic mass can trigger energy capture of both main resonance and high-frequency resonance. Furthermore, the comparison with the traditional NES also confirms the advantages of the NES-IA in overcoming mass dependence.
基金Project supported by the National Natural Science Foundation of China (Nos. 11972051 and11672008)the Opening Project Foundation of the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (No. KF-2020-11)。
文摘Vibration energy harvesters(VEHs) can transform ambient vibration energy to electricity and have been widely investigated as promising self-powered devices for wireless sensor networks, wearable sensors, and applications of a micro-electro-mechanical system(MEMS). However, the ambient vibration is always too weak to hinder the high energy conversion efficiency. In this paper, the integrated frame composed of piezoelectric beams and mechanical amplifiers is proposed to improve the energy conversion efficiency of a VEH. First, the initial structures of a piezoelectric frame(PF) and an amplification frame(AF) are designed. The dynamic model is then established to analyze the influence of key structural parameters on the mechanical amplification factor. Finite element simulation is conducted to study the energy harvesting performance, where the stiffness characteristics and power output in the cases of series and parallel load resistance are discussed in detail. Furthermore, piezoelectric beams with variable cross-sections are introduced to optimize and improve the energy harvesting efficiency. Advantages of the PF with the AF are illustrated by comparison with conventional piezoelectric cantilever beams. The results show that the proposed integrated VEH has a good mechanical amplification capability and is more suitable for low-frequency vibration conditions.