In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < ...In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < r < p and u is an element of W-0(1,r)(Omega;partial derivativeOmega\E) where E subset of partial derivativeOmega is a closed set and small in an appropriate capacity sense, then u = 0, a.e. in Omega provided that r(0) < r < p.展开更多
In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 =...In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 = r2(n, r1,p) 〉 p, such that for every very weak solution u∈W^1r1,loc(Ω) to A-harmonic equation, u also belongs to W^1r2,loc(Ω) . In particular, u is the weak solution to A-harmonic equation in the usual sense.展开更多
文摘In this paper,the following result is given by using Hodge decomposition: There exists r(0) = r(0)(n,p,a,b), such that if u is an element of W-loc(1,r)(Omega) is a very weak solution of (1.1),with C max{1,p - 1} < r < p and u is an element of W-0(1,r)(Omega;partial derivativeOmega\E) where E subset of partial derivativeOmega is a closed set and small in an appropriate capacity sense, then u = 0, a.e. in Omega provided that r(0) < r < p.
文摘In this paper, the following result is given by using Hodge decomposition and weak reverse Holder inequality: For every r1 with P-(2^n+1 100^n^2 p(2^3+n/(P-1)+1)b/a)^-1〈r1〈p,there exists the exponent r2 = r2(n, r1,p) 〉 p, such that for every very weak solution u∈W^1r1,loc(Ω) to A-harmonic equation, u also belongs to W^1r2,loc(Ω) . In particular, u is the weak solution to A-harmonic equation in the usual sense.