The increased deployment of electricity-based hydrogen production strengthens the coupling of power distribution system(PDS)and hydrogen energy system(HES).Considering that power to hydrogen(PtH)has great potential to...The increased deployment of electricity-based hydrogen production strengthens the coupling of power distribution system(PDS)and hydrogen energy system(HES).Considering that power to hydrogen(PtH)has great potential to facilitate the usage of renewable energy sources(RESs),the coordination of PDS and HES is important for planning purposes under high RES penetration.To this end,this paper proposes a multi-stage co-planning model for the PDS and HES.For the PDS,investment decisions on network assets and RES are optimized to supply the growing electric load and PtHs.For the HES,capacities of PtHs and hydrogen storages(HSs)are optimally determined to satisfy hydrogen load considering the hydrogen production,tube trailer transportation,and storage constraints.The overall planning problem is formulated as a multistage stochastic optimization model,in which the investment decisions are sequentially made as the uncertainties of electric and hydrogen load growth states are revealed gradually over periods.Case studies validate that the proposed co-planning model can reduce the total planning cost,promote RES consumption,and obtain more flexible decisions under long-term load growth uncertainties.展开更多
Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal c...Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.展开更多
基金supported in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX22_0258)in part by the National Natural Science Foundation of China(No.52177077)。
文摘The increased deployment of electricity-based hydrogen production strengthens the coupling of power distribution system(PDS)and hydrogen energy system(HES).Considering that power to hydrogen(PtH)has great potential to facilitate the usage of renewable energy sources(RESs),the coordination of PDS and HES is important for planning purposes under high RES penetration.To this end,this paper proposes a multi-stage co-planning model for the PDS and HES.For the PDS,investment decisions on network assets and RES are optimized to supply the growing electric load and PtHs.For the HES,capacities of PtHs and hydrogen storages(HSs)are optimally determined to satisfy hydrogen load considering the hydrogen production,tube trailer transportation,and storage constraints.The overall planning problem is formulated as a multistage stochastic optimization model,in which the investment decisions are sequentially made as the uncertainties of electric and hydrogen load growth states are revealed gradually over periods.Case studies validate that the proposed co-planning model can reduce the total planning cost,promote RES consumption,and obtain more flexible decisions under long-term load growth uncertainties.
基金supported by National Key R&D Program of China(Grant No.2018YFE0204302)National Natural Science Foundation of China(Grant No.52062015,No.61703160)+1 种基金the Talent Research Start-up Fund of Nanjing University of Aeronautics and Astronautics(YAH22019)Jiangsu High Level'Shuang-Chuang'Project.
文摘Existing signal control systems for urban traffic are usually based on traffic flow data from fixed location detectors.Because of rapid advances in emerging vehicular communication,connected vehicle(CV)-based signal control demonstrates significant improvements over existing conventional signal control systems.Though various CV-based signal control systems have been investigated in the past decades,these approaches still have many issues and drawbacks to overcome.We summarize typical components and structures of these existing CV-based urban traffic signal control systems and digest several important issues from the summarized vital concepts.Last,future research directions are discussed with some suggestions.We hope this survey can facilitate the connected and automated vehicle and transportation research community to efficiently approach next-generation urban traffic signal control methods and systems.