The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the ...The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the CA mortar layer is developed using continuous damage mechanics and probability theory.In this model,the strength of the CA mortar elements is treated as a random variable,which follows the Weibull distribution.The inclusion of strain rate dependence affords considering its influence on the damage development and the transition between viscosity and elasticity.Comparisons with experimental data support the reliability of the model.A three-dimensional finite element(FE)model of a slab track is then created with the commercial software ABAQUS,where the devised model for the CA mortar is implemented as a user-defined material subroutine.Finally,a vertical vehicle model is coupled with the FE model of the slab track,through the wheel-rail contact forces,based on the nonlinear Hertzian contact theory.The evolution of the damage and of the dynamic performance of the CA mortar layer with various initial damage is investigated under the train and track interaction.The analysis indicates that the proposed model is capable of predicting the damage evolution of the CA mortar layer exposed to vehicle dynamic load.The dynamic compressive strain,the strain rate,and the induced damage increase significantly with an increase in the initial damage,whereas the dynamic compressive stress exhibits a sharp decrease with the increasing initial damage.Also,it is found that the strain rate dependence significantly influences the damage evolution and the dynamic behavior of the CA mortar layer.展开更多
China railway, as the essential infrastructure of China national economy, has to face and solve a lot of technical problems so as to cope with the strategic requirement of continuous, rapid and healthy development of ...China railway, as the essential infrastructure of China national economy, has to face and solve a lot of technical problems so as to cope with the strategic requirement of continuous, rapid and healthy development of national economy. The main issue is to raise passenger train speed and develop high-speed train operation technology. It involves such fields as locomotive and cars, signaling and communication, traffic organization, railway construction etc., it is a huge and complicated system engineering. In the system, railway track, bridge and tunnel are the running foundation of rapid and high-speed train, their quality directly affect the train speed and running quality, such as running stability, comfort and safety. So it is necessary to study the influence of track irregularity on train running quality and take effective measure to control track irregularity during the development of high-speed passenger train operation technology, for ensuring train running safety, extending the service-life of track and vehicle parts and improving train running stability and comfort. In view of the above-mentioned facts, the influence on running safety and stability of quasi & high-speed passenger car under track irregularity excitation is the topic of the thesis. Taking vehicle-track or vehicle-track-bridge vertical and lateral coupling system dynamic model as analytical method, the thesis systematically discusses dynamic behavior of quasi & high-speed vehicles excited by track irregularities of the ballast track, the influence on dynamic response of rail/wheel system excited by rail surface vertical short-wave roughness, serviceability of running vehicles on bridge under excitation of special track irregularities caused by bridge arch, pier uneven settlement and subsidence error between abutment and subgrade. Track irregularities are actually complicated random processes, consisting of approximately stationary ergodic processes of general track irregularities in entire length and non-stationary processes reflecting geome展开更多
The effect of rail corrugation on the vertical dynamics of railway vehicle coupled with a curved track is investigated in detail with a numerical method when a wheelset is steadily curving. In the calculation of rail ...The effect of rail corrugation on the vertical dynamics of railway vehicle coupled with a curved track is investigated in detail with a numerical method when a wheelset is steadily curving. In the calculation of rail corrugation we consider the combination of Kalkers rolling contact theory modified, a model of material loss on rail running surface, and a dynamics model of railway vehicle coupled with a curved track. In the establishment of the dynamic model, for simplicity, one fourth of the freight car without lateral motions, namely a wheelset and the equivalent one fourth freight car body above it, is considered. The Euler beam is used to model the rails and the track structure under the rails is replaced with equivalent springs, dampers and mass bodies. The numerical results show the great influence of the rail corrugation on the vibration of the parts of the vehicle and the track, and the some characters of rail corrugation in development.展开更多
The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spati...The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset o展开更多
研究目的:减振扣件与弹性道床垫组合减振轨道的特点是在钢轨下和道床下同时设置减振层,轨道板厚度、扣件刚度、弹性道床垫刚度是影响列车运行品质和组合减振轨道减振性能的关键动力学参数。本文采用三维车辆-轨道耦合动力学计算模型,研...研究目的:减振扣件与弹性道床垫组合减振轨道的特点是在钢轨下和道床下同时设置减振层,轨道板厚度、扣件刚度、弹性道床垫刚度是影响列车运行品质和组合减振轨道减振性能的关键动力学参数。本文采用三维车辆-轨道耦合动力学计算模型,研究组合减振轨道关键动力学参数变化对车辆系统、轨道系统动力学性能及减振性能的影响规律。研究结论:(1)轨道板质量对各动力学指标的影响相对较小,轨道板的设计应以轨道基础预留空间和板自身的强度、耐久性要求作为控制指标;(2)与弹性道床垫配合使用的减振扣件系统的垂向刚度应大于15 k N/mm;(3)轨道板下垫层刚度取值应大于13 k N/mm3;(4)设计中宜适当提高扣件刚度,当弹性道床垫老化失去部分弹性功能后,可通过提高扣件弹性使其减振性能长期满足环保要求;(5)综合上述规律,提出了减振性能可达12 d B的扣件与弹性道床垫组合减振轨道的关键动力学参数取值方案,可为组合减振轨道的设计提供理论支持。展开更多
This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geo...This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.展开更多
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2013CB036202,2013CB036200)the National Natural Science Foundation of China(Grant No.51008254)+3 种基金the Funds from the Key Laboratory for Precision&Non-traditional Machining of the Ministry of Education,Dalian University of Technology(Grant No.JMTZ201002)the Fundamental Research Funds for the Central Universities(Grant No.2682013CX029)the Funds from the China Scholarship Councilthe 2013 Cultivation Program for the Excellent Doctoral Dissertation of Southwest Jiaotong University
文摘The damage evolution and dynamic performance of a cement asphalt(CA)mortar layer of slab track subjected to vehicle dynamic load is investigated in this paper.Initially,a statistical damage constitutive model for the CA mortar layer is developed using continuous damage mechanics and probability theory.In this model,the strength of the CA mortar elements is treated as a random variable,which follows the Weibull distribution.The inclusion of strain rate dependence affords considering its influence on the damage development and the transition between viscosity and elasticity.Comparisons with experimental data support the reliability of the model.A three-dimensional finite element(FE)model of a slab track is then created with the commercial software ABAQUS,where the devised model for the CA mortar is implemented as a user-defined material subroutine.Finally,a vertical vehicle model is coupled with the FE model of the slab track,through the wheel-rail contact forces,based on the nonlinear Hertzian contact theory.The evolution of the damage and of the dynamic performance of the CA mortar layer with various initial damage is investigated under the train and track interaction.The analysis indicates that the proposed model is capable of predicting the damage evolution of the CA mortar layer exposed to vehicle dynamic load.The dynamic compressive strain,the strain rate,and the induced damage increase significantly with an increase in the initial damage,whereas the dynamic compressive stress exhibits a sharp decrease with the increasing initial damage.Also,it is found that the strain rate dependence significantly influences the damage evolution and the dynamic behavior of the CA mortar layer.
文摘China railway, as the essential infrastructure of China national economy, has to face and solve a lot of technical problems so as to cope with the strategic requirement of continuous, rapid and healthy development of national economy. The main issue is to raise passenger train speed and develop high-speed train operation technology. It involves such fields as locomotive and cars, signaling and communication, traffic organization, railway construction etc., it is a huge and complicated system engineering. In the system, railway track, bridge and tunnel are the running foundation of rapid and high-speed train, their quality directly affect the train speed and running quality, such as running stability, comfort and safety. So it is necessary to study the influence of track irregularity on train running quality and take effective measure to control track irregularity during the development of high-speed passenger train operation technology, for ensuring train running safety, extending the service-life of track and vehicle parts and improving train running stability and comfort. In view of the above-mentioned facts, the influence on running safety and stability of quasi & high-speed passenger car under track irregularity excitation is the topic of the thesis. Taking vehicle-track or vehicle-track-bridge vertical and lateral coupling system dynamic model as analytical method, the thesis systematically discusses dynamic behavior of quasi & high-speed vehicles excited by track irregularities of the ballast track, the influence on dynamic response of rail/wheel system excited by rail surface vertical short-wave roughness, serviceability of running vehicles on bridge under excitation of special track irregularities caused by bridge arch, pier uneven settlement and subsidence error between abutment and subgrade. Track irregularities are actually complicated random processes, consisting of approximately stationary ergodic processes of general track irregularities in entire length and non-stationary processes reflecting geome
基金The project supported by the National Natural Science Foundation of China(59935100)the Foundation of Ph.D Student Education of China(20020613001)the Foundation of the Author of National Excellent Doctoral Dissertation of China(2000048,2002048)
文摘The effect of rail corrugation on the vertical dynamics of railway vehicle coupled with a curved track is investigated in detail with a numerical method when a wheelset is steadily curving. In the calculation of rail corrugation we consider the combination of Kalkers rolling contact theory modified, a model of material loss on rail running surface, and a dynamics model of railway vehicle coupled with a curved track. In the establishment of the dynamic model, for simplicity, one fourth of the freight car without lateral motions, namely a wheelset and the equivalent one fourth freight car body above it, is considered. The Euler beam is used to model the rails and the track structure under the rails is replaced with equivalent springs, dampers and mass bodies. The numerical results show the great influence of the rail corrugation on the vibration of the parts of the vehicle and the track, and the some characters of rail corrugation in development.
基金Project(U1234211)supported of the National Natural Science Foundation of ChinaProject(20120009110020)supported by the Specialized Research Fund for Ph.D. Programs of Foundation of Ministry of Education of ChinaProject(SHGF-11-32)supported the Scientific and Technological Innovation Project of China Shenhua Energy Company Limited
文摘The prediction of the wheel wear is a fundamental problem in heavy haul railway. A numerical methodology is introduced to simulate the wheel wear evolution of heavy haul freight car. The methodology includes the spatial coupling dynamics of vehicle and track, the three-dimensional rolling contact analysis of wheel-rail, the Specht's material wear model, and the strategy for reproducing the actual operation conditions of railway. The freight vehicle is treated as a full 3D rigid multi-body model. Every component is built detailedly and various contact interactions between parts are accurately simulated, taking into account the real clearances. The wheel-rail rolling contact calculation is carried out based on Hertz's theory and Kalker's FASTSIM algorithm. The track model is built based on field measurements. The material loss due to wear is evaluated according to the Specht's model in which the wear coefficient varies with the wear intensity. In order to exactly reproduce the actual operating conditions of railway,dynamic simulations are performed separately for all possible track conditions and running velocities in each iterative step.Dimensionless weight coefficients are introduced that determine the ratios of different cases and are obtained through site survey. For the wheel profile updating, an adaptive step strategy based on the wear depth is introduced, which can effectively improve the reliability and stability of numerical calculation. At last, the wear evolution laws are studied by the numerical model for different wheels of heavy haul freight vehicle running in curves. The results show that the wear of the front wheelset is more serious than that of the rear wheelset for one bogie, and the difference is more obvious for the outer wheels. The wear of the outer wheels is severer than that of the inner wheels. The wear of outer wheels mainly distributes near the flange and the root; while the wear of inner wheels mainly distributes around the nominal rolling circle. For the outer wheel of front wheelset o
文摘研究目的:减振扣件与弹性道床垫组合减振轨道的特点是在钢轨下和道床下同时设置减振层,轨道板厚度、扣件刚度、弹性道床垫刚度是影响列车运行品质和组合减振轨道减振性能的关键动力学参数。本文采用三维车辆-轨道耦合动力学计算模型,研究组合减振轨道关键动力学参数变化对车辆系统、轨道系统动力学性能及减振性能的影响规律。研究结论:(1)轨道板质量对各动力学指标的影响相对较小,轨道板的设计应以轨道基础预留空间和板自身的强度、耐久性要求作为控制指标;(2)与弹性道床垫配合使用的减振扣件系统的垂向刚度应大于15 k N/mm;(3)轨道板下垫层刚度取值应大于13 k N/mm3;(4)设计中宜适当提高扣件刚度,当弹性道床垫老化失去部分弹性功能后,可通过提高扣件弹性使其减振性能长期满足环保要求;(5)综合上述规律,提出了减振性能可达12 d B的扣件与弹性道床垫组合减振轨道的关键动力学参数取值方案,可为组合减振轨道的设计提供理论支持。
基金supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 51735012 and 11790283
文摘This paper aims to clarify the influence of system spatial variability on train–track interaction from perspectives of stochastic analysis and statistics.Considering the spatial randomness of system properties in geometry,physics and mechanics,the primary work is therefore simulating the uncertainties realistically,representatively and efficiently.With regard to the track irregularity simulation,a model is newly developed to obtain random sample sets of track irregularities by transforming its power spectral density function into the equivalent track quality index for representation based on the discrete Parseval theorem,where the correlation between various types of track irregularities is accounted for.To statistically clarify the uncertainty of track properties in physics and mechanics in space,a model combining discrete element method and finite element method is developed to obtain the spatially varied track parametric characteristics,e.g.track stiffness and density,through which the highly expensive experiments in situ can be avoided.Finally a train–track stochastic analysis model is formulated by integrating the system uncertainties into the dynamics model.Numerical examples have validated the accuracy and efficiency of this model and illustrated the effects of system spatial variability on train–track vibrations comprehensively.