In recent years, the Vehicle-to-Vehicle(V2V) communication system has been considered one of the most promising technologies to build a much safer and more efficient transportation system. Both simulation and field te...In recent years, the Vehicle-to-Vehicle(V2V) communication system has been considered one of the most promising technologies to build a much safer and more efficient transportation system. Both simulation and field test have been extensively performed to evaluate the performance of the V2V communication system. However,most of the evaluation methods are communication-based, and although in a transportation environment, lack a V2V application-oriented analysis. In this study, we conducted real-world tests and built an application-oriented evaluation model. The experiments were classified into four scenarios: static, following, face 2 face, and crossing vertically, which almost covered all the V2V communication patterns on the road. Under these scenarios, we conducted experiments and built a probability model to evaluate the performance of 802.11p and LTE-V in safetyrelated applications. Consequently, we found out that improvements are still needed in Non-Line-of-Sight scenarios.展开更多
基金supported in part by the National Natural Science Foundation of China(No.61673233)Beijing Municipal Science and Technology Program(No.D15110900280000)+1 种基金subsidized by the standardization and new model for intelligent manufacture:Research and Test Platform of System and Communication Standardization for Intelligent and Connected Vehicle(No.2016ZXFB06002)Shanghai International Automobile City
文摘In recent years, the Vehicle-to-Vehicle(V2V) communication system has been considered one of the most promising technologies to build a much safer and more efficient transportation system. Both simulation and field test have been extensively performed to evaluate the performance of the V2V communication system. However,most of the evaluation methods are communication-based, and although in a transportation environment, lack a V2V application-oriented analysis. In this study, we conducted real-world tests and built an application-oriented evaluation model. The experiments were classified into four scenarios: static, following, face 2 face, and crossing vertically, which almost covered all the V2V communication patterns on the road. Under these scenarios, we conducted experiments and built a probability model to evaluate the performance of 802.11p and LTE-V in safetyrelated applications. Consequently, we found out that improvements are still needed in Non-Line-of-Sight scenarios.