期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于生成对抗网络的车辆换道轨迹预测模型 被引量:13
1
作者 温惠英 张伟罡 赵胜 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第5期32-40,共9页
车辆运动轨迹的预测在车辆的自动驾驶与车联网技术中有着重要意义,通过预测轨迹可以判断车辆未来运动状态,避免发生碰撞。针对车辆换道轨迹的预测问题,提出了基于生成对抗网络的换道轨迹预测模型。通过实车实验,以城市道路中换道行为为... 车辆运动轨迹的预测在车辆的自动驾驶与车联网技术中有着重要意义,通过预测轨迹可以判断车辆未来运动状态,避免发生碰撞。针对车辆换道轨迹的预测问题,提出了基于生成对抗网络的换道轨迹预测模型。通过实车实验,以城市道路中换道行为为实例,采用高精度GPS仪器采集车辆换道轨迹数据。在此基础上,建立基于生成对抗网络的轨迹预测模型,其中生成模型采用了LSTM的编码器-解码器结构,通过输入给定的历史换道轨迹,经解码器生成预测时段换道轨迹。判别模型通过搭建基于MLP的神经网络,将生成的预测轨迹与目标轨迹进行多重判别,并通过联合训练生成模型和判别模型,实现对车辆未来时段内的换道轨迹进行预测。同时通过交叉验证与模型对比,分析了不同长度的历史轨迹与预测轨迹对预测精度的影响,并验证了模型的有效性和准确性。结果表明轨迹生成对抗模型与传统模型相比,可实现对换道轨迹长时段的预测,且预测精度有明显的提高。 展开更多
关键词 车辆换道 轨迹预测 生成对抗网络 LSTM编码器-解码器
下载PDF
考虑换道意图的LSTM-AdaBoost车辆轨迹预测模型 被引量:8
2
作者 孟宪伟 唐进君 王喆 《计算机工程与应用》 CSCD 北大核心 2022年第13期280-287,共8页
不合理的车辆的换道行为是导致交通事故发生的主要原因之一,提前预知换道车辆的轨迹并及时做出相应调整有助于减少事故的发生。针对换道车辆轨迹预测问题,采用将深度学习和集成学习相结合的轨迹预测方法,并考虑了换道意图的影响。建立... 不合理的车辆的换道行为是导致交通事故发生的主要原因之一,提前预知换道车辆的轨迹并及时做出相应调整有助于减少事故的发生。针对换道车辆轨迹预测问题,采用将深度学习和集成学习相结合的轨迹预测方法,并考虑了换道意图的影响。建立连续隐马尔可夫模型对车辆进行换道意图检测,提前判别车辆的换道状态,并输入至相应的轨迹预测模型中;将LSTM(long short term memory)作为AdaBoost算法(adaptive boosting)的基预测器,建立LSTM-AdaBoost模型,在多个基预测器同时进行轨迹预测的基础上,通过训练调整各个基预测器的权重并将结果加权集成,提升预测模型的精度和稳定性;通过NSGIM(next generation simulation)数据集对模型进行训练和测试,结果显示意图预测模型在变道前一秒的准确率在90%以上,LSTM-AdaBoost集成轨迹预测模型与单一的LSTM模型相比精度和稳定性显著提升,且预测结果中异常数据更少,具有较好的稳定性;同时预测对比结果也表明增加意图预测模块有助于提升换道轨迹预测的精度。 展开更多
关键词 车辆换道轨迹预测 换道意图识别 隐马尔可夫模型 长短期记忆网络 AdaBoost集成算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部