提出了一种用于设计汽车运行工况的新方法,以速度和功率(velocity and power,VP)分布一致性为设计目标,建立满意准则模型进行汽车运行工况设计。在分析处理实车试验数据的基础上,设计开发了长春市乘用车运行工况,并且通过分析设计工况...提出了一种用于设计汽车运行工况的新方法,以速度和功率(velocity and power,VP)分布一致性为设计目标,建立满意准则模型进行汽车运行工况设计。在分析处理实车试验数据的基础上,设计开发了长春市乘用车运行工况,并且通过分析设计工况的油耗特性,验证了基于VP分布的运行工况设计方法的合理性。展开更多
汽车行驶工况体现了汽车道路行驶的运动学特征,现有的行驶工况构建方法往往存在着构建粒度不细、精度不高的问题。为了解决工况构建的粒度和精度问题,提出了一种细粒度汽车行驶工况模型构建方法(Construction method of Automobile Driv...汽车行驶工况体现了汽车道路行驶的运动学特征,现有的行驶工况构建方法往往存在着构建粒度不细、精度不高的问题。为了解决工况构建的粒度和精度问题,提出了一种细粒度汽车行驶工况模型构建方法(Construction method of Automobile Driving Cycles based on SOM and Markov model,ADCSM)。首先行驶数据进行Daubechies-4阶小波分析降噪,划分短行程,对短行程提取了10个特征,将短行程特征输入SOM神经网络,然后聚类到(1*3)神经网络中,得到聚类结果序列,并建立了马尔可夫模型,最终通过ADCSM算法完成工况构建。对所构建的工况进行了验证,并将所得工况与传统的K-means聚类构建方法的结果进行了比较分析。实验结果表明,ADCSM最终误差为4.07%,而传统的K-means误差为8.77%,ADCSM利用了SOM神经网络聚类的方法,比传统K-means方法聚类精度更高,并具备了工况自学习能力。ADCSM利用马尔可夫模型方法体现了城市行驶状况的转换关系,与传统K-means行驶工况构建方法相比粒度更细,故合成的行驶工况效果更好,更能反映城市特征。展开更多
文摘提出了一种用于设计汽车运行工况的新方法,以速度和功率(velocity and power,VP)分布一致性为设计目标,建立满意准则模型进行汽车运行工况设计。在分析处理实车试验数据的基础上,设计开发了长春市乘用车运行工况,并且通过分析设计工况的油耗特性,验证了基于VP分布的运行工况设计方法的合理性。
文摘汽车行驶工况体现了汽车道路行驶的运动学特征,现有的行驶工况构建方法往往存在着构建粒度不细、精度不高的问题。为了解决工况构建的粒度和精度问题,提出了一种细粒度汽车行驶工况模型构建方法(Construction method of Automobile Driving Cycles based on SOM and Markov model,ADCSM)。首先行驶数据进行Daubechies-4阶小波分析降噪,划分短行程,对短行程提取了10个特征,将短行程特征输入SOM神经网络,然后聚类到(1*3)神经网络中,得到聚类结果序列,并建立了马尔可夫模型,最终通过ADCSM算法完成工况构建。对所构建的工况进行了验证,并将所得工况与传统的K-means聚类构建方法的结果进行了比较分析。实验结果表明,ADCSM最终误差为4.07%,而传统的K-means误差为8.77%,ADCSM利用了SOM神经网络聚类的方法,比传统K-means方法聚类精度更高,并具备了工况自学习能力。ADCSM利用马尔可夫模型方法体现了城市行驶状况的转换关系,与传统K-means行驶工况构建方法相比粒度更细,故合成的行驶工况效果更好,更能反映城市特征。