Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of compreh...Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of comprehensive management for catchments mainly by adjusting cropland, grassland and woodland areas was widely adopted to reduce soil and water loss in catchments of the Chinese Loess Plateau. Three experiments under natural and artificial rainfall conditions on N loss by erosion for a model catchment and for an actual catchment in Zhifanggou of Ansai County in China was performed to determine the relationships between comprehensive management and N loss by runoff in small catchments. The results for vegetation coverage of 60%, 40%, 20% and 0 show that runoff loss of ammonium, nitrate, and total N were 87.08, 44.31, 25.16, 13.71 kg/km(2); 85.50, 74.06, 63.95, 56.23 kg/km(2); and 0.18, 1.18, 1.98, 7.51 t/ km(2), respectively. Due to reduction in the size of cropped area on steeply sloping land, soil N loss by erosion in the catchments was decreased by 15.8% as compared with that in 1992, i.e., from 8 758.5 kg in 1992 to 7 562.2 kg in 1998. Whereas, catchments act as a filter for ammonium and nitrate in rain, the catchment filtering effects on nitrate is remarkably higher than that on ammonium. The enrichment of < 20 mum aggregate in sediment results in the enrichment of organic matter and total N in flood sediment. Greater vegetation coverage can effectively decrease soil erosion and total N loss. However, soil mineral N loss increased as vegetation coverage increased.展开更多
A riparian ecosystem is an ecological transition zone between a river channel and terrestrial ecosystems. Riparian ecosystems play a vital role in maintaining stream health and bank stabilization. The types of riparia...A riparian ecosystem is an ecological transition zone between a river channel and terrestrial ecosystems. Riparian ecosystems play a vital role in maintaining stream health and bank stabilization. The types of riparian vegetation have changed greatly because of human activities along the Wenyu River. This study examines the impact of riparian vegetation patterns on water pollution due to soil nutrient loss. Four riparian vegetation patterns from the river channel to the upland were chosen as the focus of this study: grassland, cropland, grassland- cropland, and grassland-manrnade lawn. The different distributions of soil nutrients along vegetation patterns and the potential risk of nutrient loss were observed and compared. The results showed that riparian cropland has the lowest value of total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and organic matter (OM), but it has the highest soil bulk density (BD). The distributions of soil TN, TP, AN, AP, and OM exhibited a declining trend from the upland toward the river channel for riparian cropland, whereas a different trend was observed for the riparian grassland. The vegetation patterns of grassland-cropland and grassland- manmade lawn show that the grassland in the lower slope has more nutrients and OM but lower soil BD than the cropland or manmade lawn in the upper slope. So, the lower-slope grassland may intercept and infiltrate surface runoff from the upland. The lower-slope grassland has higher levels of soil TN, TP, AN, and AP, and thus it may become a new source of nutrient loss. Our results suggest that the management of the riparian vegetation should be improved, particularly in densely populated areas, to control soil erosion and river pollution.展开更多
Land use changes have significant impacts on the carbon balance in an urban ecosystem.When there is rapid development in urbanizing regions,land use changes have a dramatic effect on vegetation carbon storage(VCS).Thi...Land use changes have significant impacts on the carbon balance in an urban ecosystem.When there is rapid development in urbanizing regions,land use changes have a dramatic effect on vegetation carbon storage(VCS).This study investigates the impact of land use change on VCS in a period of rapid urbanization in Hangzhou,China.The results show that:1)from 2000 to 2015,land use in Hangzhou underwent huge changes,mainly reflected in decrease in cropland and wetland and the increased settlement.More than 34.58%of the land was transformed,and the land use changes are primarily characterized by a significant decrease in cropland due to the occupation by settlement.2)over the 15 years,changes in land use led to a decrease of 3.93×10^(5) t of VCS in the urban ecosystem.The large-scale transformation of cropland and wetland,which have a comparatively high carbon density,into land for settlement exerted a negative impact on VCS.3)The central city,which with the Circle-E/I/O mode,had the lowest comprehensive land use dynamic degree,leading to moderate land use change and an increase in VCS;Yuhang and Xiaoshan,which with Multicore-E/O/I mode and Fan-E/O/I modes,had a higher comprehensive land use dynamic degree,drastic changes in land use,and a decrease in VCS.This study proposes a reliable method of estimating changes in VCS,clarifies the relationship between land use change and VCS during rapid urbanization,and provides recommendations for sustainable urban development.展开更多
Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their rel...Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their relation- ship. We investigated litter production and litter P amount, and simulated leaf litter moving dynamics to understand the relationships between the loss of litter P and the total litter P, and between the return of litter P and the total litter P in active (AD), semi-stabilized (SSD) and stabilized (SD) dunes in Inner Mongolia, northeastern China. The vegetation litter P was 12.6, 94.5, and 201.6 mg P/m2 in AD, SSD, and SD, respectively. A significant movement and loss of leaf litter P with time occurred on the three types of sand dunes. As a result, the loss of P was 7.4, 46.9, and 69.8 mg P/m2 and the return of P was 5.5, 47.6, and 131.8 mg P/m2 in AD, SSD, and SD, respectively. The rela- tionship between both loss and return of P and total litter P in AD, SSD, and SD was revealed by linear regression. The slope of the regression line indicated the rate of loss or return of litter P. From AD to SD, the loss rate showed a declining slope (0.52, 0.32, and 0.17 for AD, SSD, and SD, respectively), and the return rate showed a rising slope (0.48, 0.67, and 0.83 for AD, SSD, and SD, respectively). The loss of litter P should be regarded in the local man- agement of vegetation and land in sand dune areas. Improved vegetation restoration measures are necessary to decrease litter P loss to maintain the stability of ecosystems in sand dune areas.展开更多
In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm...In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm,8mm and 10mm,respectively.For each diameter of glass rods,four typical cases are considered with various densities and arrangements of glass rods.The flow velocities in the four cases are measured by the 3-D laser Doppler velocimeter(LDV).The water surface slope,the flow velocity,the water head loss,the vegetation drag force and the hydraulic slope are calculated,analyzed and discussed.The horizontal,vertical and total vegetation densities in the vegetation area are defined and the relationship between these physical parameters and the water surface slope are studied.The head loss and the hydraulic slope in the vegetation area are also calculated,compared and analyzed.It is indicated that the water surface slope and velocity,the head loss and the hydraulic slope in the vegetation area have a close relationship with the arrangement,the density,and the plant diameter of the vegetation.展开更多
文摘Soil erosion and nutrient loss due to erosion are world-wide problems. Similar to soil loss by erosion, soil nitrogen (N) loss by erosion in small catchments is affected by vegetation coverage. The practice of comprehensive management for catchments mainly by adjusting cropland, grassland and woodland areas was widely adopted to reduce soil and water loss in catchments of the Chinese Loess Plateau. Three experiments under natural and artificial rainfall conditions on N loss by erosion for a model catchment and for an actual catchment in Zhifanggou of Ansai County in China was performed to determine the relationships between comprehensive management and N loss by runoff in small catchments. The results for vegetation coverage of 60%, 40%, 20% and 0 show that runoff loss of ammonium, nitrate, and total N were 87.08, 44.31, 25.16, 13.71 kg/km(2); 85.50, 74.06, 63.95, 56.23 kg/km(2); and 0.18, 1.18, 1.98, 7.51 t/ km(2), respectively. Due to reduction in the size of cropped area on steeply sloping land, soil N loss by erosion in the catchments was decreased by 15.8% as compared with that in 1992, i.e., from 8 758.5 kg in 1992 to 7 562.2 kg in 1998. Whereas, catchments act as a filter for ammonium and nitrate in rain, the catchment filtering effects on nitrate is remarkably higher than that on ammonium. The enrichment of < 20 mum aggregate in sediment results in the enrichment of organic matter and total N in flood sediment. Greater vegetation coverage can effectively decrease soil erosion and total N loss. However, soil mineral N loss increased as vegetation coverage increased.
基金Acknowledgements This research was supported by the National Natural Science Foundation of China (Grant No. 40925003), the National Major Scientific and Technological Specific Projects (No. 2012ZX07501002-002), and the Innovation Project of State Key Laboratory of Urban and Regional Ecology of China (SKLURE2008-1-02).
文摘A riparian ecosystem is an ecological transition zone between a river channel and terrestrial ecosystems. Riparian ecosystems play a vital role in maintaining stream health and bank stabilization. The types of riparian vegetation have changed greatly because of human activities along the Wenyu River. This study examines the impact of riparian vegetation patterns on water pollution due to soil nutrient loss. Four riparian vegetation patterns from the river channel to the upland were chosen as the focus of this study: grassland, cropland, grassland- cropland, and grassland-manrnade lawn. The different distributions of soil nutrients along vegetation patterns and the potential risk of nutrient loss were observed and compared. The results showed that riparian cropland has the lowest value of total nitrogen (TN), total phosphorus (TP), available nitrogen (AN), available phosphorus (AP), and organic matter (OM), but it has the highest soil bulk density (BD). The distributions of soil TN, TP, AN, AP, and OM exhibited a declining trend from the upland toward the river channel for riparian cropland, whereas a different trend was observed for the riparian grassland. The vegetation patterns of grassland-cropland and grassland- manmade lawn show that the grassland in the lower slope has more nutrients and OM but lower soil BD than the cropland or manmade lawn in the upper slope. So, the lower-slope grassland may intercept and infiltrate surface runoff from the upland. The lower-slope grassland has higher levels of soil TN, TP, AN, and AP, and thus it may become a new source of nutrient loss. Our results suggest that the management of the riparian vegetation should be improved, particularly in densely populated areas, to control soil erosion and river pollution.
基金Under the auspices of National Natural Science Foundation of China(No.41871216)。
文摘Land use changes have significant impacts on the carbon balance in an urban ecosystem.When there is rapid development in urbanizing regions,land use changes have a dramatic effect on vegetation carbon storage(VCS).This study investigates the impact of land use change on VCS in a period of rapid urbanization in Hangzhou,China.The results show that:1)from 2000 to 2015,land use in Hangzhou underwent huge changes,mainly reflected in decrease in cropland and wetland and the increased settlement.More than 34.58%of the land was transformed,and the land use changes are primarily characterized by a significant decrease in cropland due to the occupation by settlement.2)over the 15 years,changes in land use led to a decrease of 3.93×10^(5) t of VCS in the urban ecosystem.The large-scale transformation of cropland and wetland,which have a comparatively high carbon density,into land for settlement exerted a negative impact on VCS.3)The central city,which with the Circle-E/I/O mode,had the lowest comprehensive land use dynamic degree,leading to moderate land use change and an increase in VCS;Yuhang and Xiaoshan,which with Multicore-E/O/I mode and Fan-E/O/I modes,had a higher comprehensive land use dynamic degree,drastic changes in land use,and a decrease in VCS.This study proposes a reliable method of estimating changes in VCS,clarifies the relationship between land use change and VCS during rapid urbanization,and provides recommendations for sustainable urban development.
基金supported by the National Natural Science Foundation of China(30800163)
文摘Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their relation- ship. We investigated litter production and litter P amount, and simulated leaf litter moving dynamics to understand the relationships between the loss of litter P and the total litter P, and between the return of litter P and the total litter P in active (AD), semi-stabilized (SSD) and stabilized (SD) dunes in Inner Mongolia, northeastern China. The vegetation litter P was 12.6, 94.5, and 201.6 mg P/m2 in AD, SSD, and SD, respectively. A significant movement and loss of leaf litter P with time occurred on the three types of sand dunes. As a result, the loss of P was 7.4, 46.9, and 69.8 mg P/m2 and the return of P was 5.5, 47.6, and 131.8 mg P/m2 in AD, SSD, and SD, respectively. The rela- tionship between both loss and return of P and total litter P in AD, SSD, and SD was revealed by linear regression. The slope of the regression line indicated the rate of loss or return of litter P. From AD to SD, the loss rate showed a declining slope (0.52, 0.32, and 0.17 for AD, SSD, and SD, respectively), and the return rate showed a rising slope (0.48, 0.67, and 0.83 for AD, SSD, and SD, respectively). The loss of litter P should be regarded in the local man- agement of vegetation and land in sand dune areas. Improved vegetation restoration measures are necessary to decrease litter P loss to maintain the stability of ecosystems in sand dune areas.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11861003,11761005).
文摘In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm,8mm and 10mm,respectively.For each diameter of glass rods,four typical cases are considered with various densities and arrangements of glass rods.The flow velocities in the four cases are measured by the 3-D laser Doppler velocimeter(LDV).The water surface slope,the flow velocity,the water head loss,the vegetation drag force and the hydraulic slope are calculated,analyzed and discussed.The horizontal,vertical and total vegetation densities in the vegetation area are defined and the relationship between these physical parameters and the water surface slope are studied.The head loss and the hydraulic slope in the vegetation area are also calculated,compared and analyzed.It is indicated that the water surface slope and velocity,the head loss and the hydraulic slope in the vegetation area have a close relationship with the arrangement,the density,and the plant diameter of the vegetation.