Twitter is a radiant platform with a quick and effective technique to analyze users’perceptions of activities on social media.Many researchers and industry experts show their attention to Twitter sentiment analysis t...Twitter is a radiant platform with a quick and effective technique to analyze users’perceptions of activities on social media.Many researchers and industry experts show their attention to Twitter sentiment analysis to recognize the stakeholder group.The sentiment analysis needs an advanced level of approaches including adoption to encompass data sentiment analysis and various machine learning tools.An assessment of sentiment analysis in multiple fields that affect their elevations among the people in real-time by using Naive Bayes and Support Vector Machine(SVM).This paper focused on analysing the distinguished sentiment techniques in tweets behaviour datasets for various spheres such as healthcare,behaviour estimation,etc.In addition,the results in this work explore and validate the statistical machine learning classifiers that provide the accuracy percentages attained in terms of positive,negative and neutral tweets.In this work,we obligated Twitter Application Programming Interface(API)account and programmed in python for sentiment analysis approach for the computational measure of user’s perceptions that extract a massive number of tweets and provide market value to the Twitter account proprietor.To distinguish the results in terms of the performance evaluation,an error analysis investigates the features of various stakeholders comprising social media analytics researchers,Natural Language Processing(NLP)developers,engineering managers and experts involved to have a decision-making approach.展开更多
Volume visualization can not only illustrate overall distribution but also inner structure and it is an important approach for space environment research.Space environment simulation can produce several correlated var...Volume visualization can not only illustrate overall distribution but also inner structure and it is an important approach for space environment research.Space environment simulation can produce several correlated variables at the same time.However,existing compressed volume rendering methods only consider reducing the redundant information in a single volume of a specific variable,not dealing with the redundant information among these variables.For space environment volume data with multi-correlated variables,based on the HVQ-1d method we propose a further improved HVQ method by compositing variable-specific levels to reduce the redundant information among these variables.The volume data associated with each variable is divided into disjoint blocks of size 43 initially.The blocks are represented as two levels,a mean level and a detail level.The variable-specific mean levels and detail levels are combined respectively to form a larger global mean level and a larger global detail level.To both global levels,a splitting based on a principal component analysis is applied to compute initial codebooks.Then,LBG algorithm is conducted for codebook refinement and quantization.We further take advantage of progressive rendering based on GPU for real-time interactive visualization.Our method has been tested along with HVQ and HVQ-1d on high-energy proton flux volume data,including>5,>10,>30 and>50 MeV integrated proton flux.The results of our experiments prove that the method proposed in this paper pays the least cost of quality at compression,achieves a higher decompression and rendering speed compared with HVQ and provides satisficed fidelity while ensuring interactive rendering speed.展开更多
In the coal-based combustion and gasification processes, the mineral matter contained in the coal (predominantly oxides), is left as an incombustible residue, termed ash. Commonly, ash deposits are formed on the heat ...In the coal-based combustion and gasification processes, the mineral matter contained in the coal (predominantly oxides), is left as an incombustible residue, termed ash. Commonly, ash deposits are formed on the heat absorbing surfaces of the exposed equipment of the combustion/gasification processes. These deposits lead to the occurrence of slagging or fouling and. consequently, reduced process efficiency. The ash fusion temperatures (AFTs) signify the temperature range over which the ash deposits are formed on the heat absorbing surfaces of the process equipment. Thus, for designing and operating the coal-based processes, it is important to have mathematical models predicting accurately the four types of AFTs namely initial deformation temperature, softening temperature, hemispherical temperature, and flow temperature. Several linear/nonlinear models with varying prediction accuracies and complexities are available for the AFT prediction. Their principal drawback is their applicability to the coals originating from a limited number of geographical regions. Accordingly, this study presents computational intelligenee (CI) based nonlinear models to predict the four AFTs using the oxide composition of the coal ash as the model input. The CI methods used in the modeling are genetic programming (GP), artificial neural networks, and support vector regression. The no table features of this study are that the models with a better AFT prediction and generalization performanee, a wider application potential, and reduced complexity, have been developed. Among the Ci-based models, GP and MLP based models have yielded overall improved performanee in predicting all four AFTs.展开更多
The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product...The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product gases are imbalanced, gas flaring may occur, leading to energy wastage and environmental pollution. Therefore, optimal scheduling of by-product gases is important in iron and steel works. A BP_LSSVM model, which combines back-propagation (BP) neural network and least squares support vector machine (LSSVM), and an improved mixed integer linear programming model were proposed to forecast the surplus gases and allocate them optimally. To maximize energy utilization, the stability of gas holders and boilers was considered and a concise heuristic procedure was proposed to assign penalties for boilers and gas holders. Moreover, the optimal level of gas holder was studied to enhance the stability of the gas system. Compared to the manual operation, the optimal results showed that the electricity generated by the power plant increased by 2.93% in normal condition and by 22.2% in overhaul condition. The proposed model minimizes the total cost by optimizing the boiler load with less adjustment frequency and the stability of gas holders and can be used as a guidance in dynamic forecasting and optimal scheduling of by-product gases in integrated iron and steel works.展开更多
In this paper, weak strictly convex vector function and weak strictly H\-α convex vector function are introduced. We prove the uniqueness of major efficient solution when the objective function is weak strictly c...In this paper, weak strictly convex vector function and weak strictly H\-α convex vector function are introduced. We prove the uniqueness of major efficient solution when the objective function is weak strictly convex vector function, and the uniqueness of α major efficient solution when the objective function is weak strictly H α convex vector function.展开更多
We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presentin...We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented.展开更多
基金This work was supported by Taif University Researchers Supporting Project(TURSP)under number(TURSP-2020/73),Taif University,Taif,Saudi Arabia.
文摘Twitter is a radiant platform with a quick and effective technique to analyze users’perceptions of activities on social media.Many researchers and industry experts show their attention to Twitter sentiment analysis to recognize the stakeholder group.The sentiment analysis needs an advanced level of approaches including adoption to encompass data sentiment analysis and various machine learning tools.An assessment of sentiment analysis in multiple fields that affect their elevations among the people in real-time by using Naive Bayes and Support Vector Machine(SVM).This paper focused on analysing the distinguished sentiment techniques in tweets behaviour datasets for various spheres such as healthcare,behaviour estimation,etc.In addition,the results in this work explore and validate the statistical machine learning classifiers that provide the accuracy percentages attained in terms of positive,negative and neutral tweets.In this work,we obligated Twitter Application Programming Interface(API)account and programmed in python for sentiment analysis approach for the computational measure of user’s perceptions that extract a massive number of tweets and provide market value to the Twitter account proprietor.To distinguish the results in terms of the performance evaluation,an error analysis investigates the features of various stakeholders comprising social media analytics researchers,Natural Language Processing(NLP)developers,engineering managers and experts involved to have a decision-making approach.
基金the Key Research Program of the Chinese Academy of Sciences(ZDRE-KT-2021-3)。
文摘Volume visualization can not only illustrate overall distribution but also inner structure and it is an important approach for space environment research.Space environment simulation can produce several correlated variables at the same time.However,existing compressed volume rendering methods only consider reducing the redundant information in a single volume of a specific variable,not dealing with the redundant information among these variables.For space environment volume data with multi-correlated variables,based on the HVQ-1d method we propose a further improved HVQ method by compositing variable-specific levels to reduce the redundant information among these variables.The volume data associated with each variable is divided into disjoint blocks of size 43 initially.The blocks are represented as two levels,a mean level and a detail level.The variable-specific mean levels and detail levels are combined respectively to form a larger global mean level and a larger global detail level.To both global levels,a splitting based on a principal component analysis is applied to compute initial codebooks.Then,LBG algorithm is conducted for codebook refinement and quantization.We further take advantage of progressive rendering based on GPU for real-time interactive visualization.Our method has been tested along with HVQ and HVQ-1d on high-energy proton flux volume data,including>5,>10,>30 and>50 MeV integrated proton flux.The results of our experiments prove that the method proposed in this paper pays the least cost of quality at compression,achieves a higher decompression and rendering speed compared with HVQ and provides satisficed fidelity while ensuring interactive rendering speed.
文摘In the coal-based combustion and gasification processes, the mineral matter contained in the coal (predominantly oxides), is left as an incombustible residue, termed ash. Commonly, ash deposits are formed on the heat absorbing surfaces of the exposed equipment of the combustion/gasification processes. These deposits lead to the occurrence of slagging or fouling and. consequently, reduced process efficiency. The ash fusion temperatures (AFTs) signify the temperature range over which the ash deposits are formed on the heat absorbing surfaces of the process equipment. Thus, for designing and operating the coal-based processes, it is important to have mathematical models predicting accurately the four types of AFTs namely initial deformation temperature, softening temperature, hemispherical temperature, and flow temperature. Several linear/nonlinear models with varying prediction accuracies and complexities are available for the AFT prediction. Their principal drawback is their applicability to the coals originating from a limited number of geographical regions. Accordingly, this study presents computational intelligenee (CI) based nonlinear models to predict the four AFTs using the oxide composition of the coal ash as the model input. The CI methods used in the modeling are genetic programming (GP), artificial neural networks, and support vector regression. The no table features of this study are that the models with a better AFT prediction and generalization performanee, a wider application potential, and reduced complexity, have been developed. Among the Ci-based models, GP and MLP based models have yielded overall improved performanee in predicting all four AFTs.
基金National Natural Science Foundation of China (No. 51874095)the National Key Research and Development Program (Project Nos. 2016YFB0601305 and 2016YFB0601301).
文摘The by-product gases, which are generated in ironmaking, coking and steel making processes, can be used as fuel for the metallurgical processes and on-site power plants. However, if the supply and demand of by-product gases are imbalanced, gas flaring may occur, leading to energy wastage and environmental pollution. Therefore, optimal scheduling of by-product gases is important in iron and steel works. A BP_LSSVM model, which combines back-propagation (BP) neural network and least squares support vector machine (LSSVM), and an improved mixed integer linear programming model were proposed to forecast the surplus gases and allocate them optimally. To maximize energy utilization, the stability of gas holders and boilers was considered and a concise heuristic procedure was proposed to assign penalties for boilers and gas holders. Moreover, the optimal level of gas holder was studied to enhance the stability of the gas system. Compared to the manual operation, the optimal results showed that the electricity generated by the power plant increased by 2.93% in normal condition and by 22.2% in overhaul condition. The proposed model minimizes the total cost by optimizing the boiler load with less adjustment frequency and the stability of gas holders and can be used as a guidance in dynamic forecasting and optimal scheduling of by-product gases in integrated iron and steel works.
文摘In this paper, weak strictly convex vector function and weak strictly H\-α convex vector function are introduced. We prove the uniqueness of major efficient solution when the objective function is weak strictly convex vector function, and the uniqueness of α major efficient solution when the objective function is weak strictly H α convex vector function.
基金a post-doctoral fellowship within the Department of Mathematics of the University of Haifa and by FAPERJ (Grant No.E-26/152.107/1990-Bolsa)Partially supported by CNP_q (Grant No.301280/86).Partially supported by CNP_q (Grant No.3002748/2002-4)
文摘We develop first order optimality conditions for constrained vector optimization. The partial orders for the objective and the constraints are induced by closed and convex cones with nonempty interior. After presenting some well known existence results for these problems, based on a scalarization approach, we establish necessity of the optimality conditions under a Slater-like constraint qualification, and then sufficiency for the K-convex case. We present two alternative sets of optimality conditions, with the same properties in connection with necessity and sufficiency, but which are different with respect to the dimension of the spaces to which the dual multipliers belong. We introduce a duality scheme, with a point-to-set dual objective, for which strong duality holds. Some examples and open problems for future research are also presented.