Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to...Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.展开更多
Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogene...Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.展开更多
Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants, fluorescent protein tags marking expression profiles or genuine proteins of intere...Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants, fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types, to monitor dynamic cell fate selection processes, and to obtain cell type-specific transcriptomes. Fluorescent tagging enabled visualization in living tissues and the precise recordings of dy- namic expression pattern changes. The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms. In developmental studies, the use of fluorescent proteins has become critical, where morphological markers of tissues, cell types, or differentiation stages are either not known or not easily recognizable. In this review, we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.展开更多
Mimicking vascular systems in living beings,designers have realized microvascular composites to achieve thermal regulation and other functionalities,such as electromagnetic modulation,sensing,and healing.Such material...Mimicking vascular systems in living beings,designers have realized microvascular composites to achieve thermal regulation and other functionalities,such as electromagnetic modulation,sensing,and healing.Such material systems avail circulating fluids through embedded vasculatures to accomplish the mentioned functionalities that benefit various aerospace,military,and civilian applications.Although heat transfer is a mature field,control of thermal characteristics in synthetic microvascular systems via circulating fluids is new,and a theoretical underpinning is lacking.What will benefit designers are predictive mathematical models and an in-depth qualitative understanding of vascular-based active cooling/heating.So,the central focus of this paper is to address the remarked knowledge gap.First,we present a reduced-order model with broad applicability,allowing the inlet temperature to differ from the ambient temperature.Second,we apply mathematical analysis tools to this reduced-order model and reveal many heat transfer properties of fluid-sequestered vascular systems.We derive point-wise properties(minimum,maximum,and comparison principles)and global properties(e.g.,bounds on performance metrics such as the mean surface temperature and thermal efficiency).These newfound results deepen our understanding of active cooling/heating and propel the perfecting of thermal regulation systems.展开更多
Background: There have been researches on the evaluation of Doppler vascular impedance in hypertensive disorders complicating pregnancy (HDCP). With respect to the method of analysis used and the conclusions drawn in ...Background: There have been researches on the evaluation of Doppler vascular impedance in hypertensive disorders complicating pregnancy (HDCP). With respect to the method of analysis used and the conclusions drawn in previous studies, different vessels were usually viewed separately and independently. This study was designed to evaluate Doppler vascular impedance changes in HDCP from a new perspective, with original thought and insight into an ordinary issue. Methods: 273 pregnant women (110 hypertensive pregnancies and 163 normotensive pregnancies) were randomly included in a grouping case-control study conducted from February 10, 2011 to April 30, 2013. All women in the study underwent Doppler measurements of six different vessels including the umbilical artery, the uterine arteries, the placental bed spiral artery, the fetal middle cerebral artery and the fetal renal artery. Doppler vascular impedance was presented as pulsatility index (PI), resistance index (RI), and systolic and diastolic ratio (S/D). Doppler changes in the hypertensive and normotensive groups were assessed by the multilevel modeling approach with univariate and multivariate-adjusted analyses. Results: According to multilevel modeling approach with multivariate-adjusted analysis, a relatively average evaluation on Doppler vascular impedance was provided. Hypertension was significantly associated with positive effects on PI, RI and S/D values (coefficients were 0.10, 0.03 and 0.08, respectively;95% CIs were 0.06 - 0.14, 0.02 - 0.04 and 0.04 - 0.11, respectively;P values were all less than 0.001) in comparison with normotensive group. Conclusion: According to an overall evaluation, Doppler vascular impedance in hypertensive disorders complicating pregnancy was higher than in normotensive pregnancy. The novel thought and approach applied in this research may bring about inspirations for better understanding and assessment of the disease.展开更多
A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at ...A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.展开更多
The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries.Such analysis would provide a good basis for evaluation of biomimetic vascular grafts.Since the l...The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries.Such analysis would provide a good basis for evaluation of biomimetic vascular grafts.Since the latter needs to exhibit similar properties of native tissue,it is important to accurately characterize the biomimetic sample in a large range of applied stresses. The stress-strain properties vary according to the specific pathology(e.g.arteriosclerosis,aneurism)and the tissue graft must be chosen correctly.Two models are proposed in this paper on the stress-strain characteristics.An extension for frequency-domain analysis is provided for one of the models.The comparison between vascular grafts and native tissue for carotid and thoracic arteries in pigs are in good agreement with results from literature.The proposed experimental method offers suitable parameters for identifying models which characterize both elasticity and stiffness properties of the analyzed tissues(stress-strain).The proposed models show good performance in characterizing the intrinsic material properties.展开更多
文摘Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.
基金the National Natural Science Foundation of China,No.82360148Guizhou Science&Technology Department,No.QKHPTRC2018-5636-2 and No.QKHPTRC2020-2201.
文摘Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.
文摘Since the hallmark discovery of Aequorea victoria's Green Fluorescent Protein (GFP) and its adaptation for efficient use in plants, fluorescent protein tags marking expression profiles or genuine proteins of interest have been used to recognize plant tissues and cell types, to monitor dynamic cell fate selection processes, and to obtain cell type-specific transcriptomes. Fluorescent tagging enabled visualization in living tissues and the precise recordings of dy- namic expression pattern changes. The resulting accurate recording of cell fate acquisition kinetics in space and time has strongly stimulated mathematical modeling of self-organizing feedback mechanisms. In developmental studies, the use of fluorescent proteins has become critical, where morphological markers of tissues, cell types, or differentiation stages are either not known or not easily recognizable. In this review, we focus on the use of fluorescent markers to identify and illuminate otherwise invisible cell states in plant development.
文摘Mimicking vascular systems in living beings,designers have realized microvascular composites to achieve thermal regulation and other functionalities,such as electromagnetic modulation,sensing,and healing.Such material systems avail circulating fluids through embedded vasculatures to accomplish the mentioned functionalities that benefit various aerospace,military,and civilian applications.Although heat transfer is a mature field,control of thermal characteristics in synthetic microvascular systems via circulating fluids is new,and a theoretical underpinning is lacking.What will benefit designers are predictive mathematical models and an in-depth qualitative understanding of vascular-based active cooling/heating.So,the central focus of this paper is to address the remarked knowledge gap.First,we present a reduced-order model with broad applicability,allowing the inlet temperature to differ from the ambient temperature.Second,we apply mathematical analysis tools to this reduced-order model and reveal many heat transfer properties of fluid-sequestered vascular systems.We derive point-wise properties(minimum,maximum,and comparison principles)and global properties(e.g.,bounds on performance metrics such as the mean surface temperature and thermal efficiency).These newfound results deepen our understanding of active cooling/heating and propel the perfecting of thermal regulation systems.
文摘Background: There have been researches on the evaluation of Doppler vascular impedance in hypertensive disorders complicating pregnancy (HDCP). With respect to the method of analysis used and the conclusions drawn in previous studies, different vessels were usually viewed separately and independently. This study was designed to evaluate Doppler vascular impedance changes in HDCP from a new perspective, with original thought and insight into an ordinary issue. Methods: 273 pregnant women (110 hypertensive pregnancies and 163 normotensive pregnancies) were randomly included in a grouping case-control study conducted from February 10, 2011 to April 30, 2013. All women in the study underwent Doppler measurements of six different vessels including the umbilical artery, the uterine arteries, the placental bed spiral artery, the fetal middle cerebral artery and the fetal renal artery. Doppler vascular impedance was presented as pulsatility index (PI), resistance index (RI), and systolic and diastolic ratio (S/D). Doppler changes in the hypertensive and normotensive groups were assessed by the multilevel modeling approach with univariate and multivariate-adjusted analyses. Results: According to multilevel modeling approach with multivariate-adjusted analysis, a relatively average evaluation on Doppler vascular impedance was provided. Hypertension was significantly associated with positive effects on PI, RI and S/D values (coefficients were 0.10, 0.03 and 0.08, respectively;95% CIs were 0.06 - 0.14, 0.02 - 0.04 and 0.04 - 0.11, respectively;P values were all less than 0.001) in comparison with normotensive group. Conclusion: According to an overall evaluation, Doppler vascular impedance in hypertensive disorders complicating pregnancy was higher than in normotensive pregnancy. The novel thought and approach applied in this research may bring about inspirations for better understanding and assessment of the disease.
基金supported by NUS Academic Research Fund (R-263-000-483-112)
文摘A new dynamic model for cell-deformation-induced adenosine triphosphate (ATP) release from vascular endothelial cells (VECs) is proposed in this paper to quantify the relationship between the ATP concentration at the surface of VECs and blood flow-induced shear stress. The simulation results demonstrate that ATP concentration at the surface of VECs predicted by the proposed new dynamic model is more consistent with the experimental observations than those by the existing static and dynamic models. Furthermore, it is the first time that a proportional-integral-derivative (PID) feedback controller is applied to modulate extracellular ATP concentration. Three types of desired ATP concentration profiles including constant, square wave and sinusoid are obtained by regulating the wall shear stress under this PID control. The systematic methodology utilized in this paper to model and control ATP release from VECs via adjusting external stimulus opens up a new scenario where quantitative investigations into the underlying mechanisms for many biochemical phenomena can be carded out for the sake of controlling specific cellular events.
文摘The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries.Such analysis would provide a good basis for evaluation of biomimetic vascular grafts.Since the latter needs to exhibit similar properties of native tissue,it is important to accurately characterize the biomimetic sample in a large range of applied stresses. The stress-strain properties vary according to the specific pathology(e.g.arteriosclerosis,aneurism)and the tissue graft must be chosen correctly.Two models are proposed in this paper on the stress-strain characteristics.An extension for frequency-domain analysis is provided for one of the models.The comparison between vascular grafts and native tissue for carotid and thoracic arteries in pigs are in good agreement with results from literature.The proposed experimental method offers suitable parameters for identifying models which characterize both elasticity and stiffness properties of the analyzed tissues(stress-strain).The proposed models show good performance in characterizing the intrinsic material properties.