针对自主空中加油输油阶段无人机位置保持控制问题,将无人机分为飞机本体和油箱两部分,利用变质量系统理论建立了无人机非线性方程,解决了常规模型无法反映出无人机重量、重心变化的问题。控制律设计方面,通过将变化的油箱转化为外界干...针对自主空中加油输油阶段无人机位置保持控制问题,将无人机分为飞机本体和油箱两部分,利用变质量系统理论建立了无人机非线性方程,解决了常规模型无法反映出无人机重量、重心变化的问题。控制律设计方面,通过将变化的油箱转化为外界干扰,提出了基于干扰观测器控制(disturbance observer based control,DOBC)的复合控制结构。复合控制器由位置保持控制器和干扰观测器组成,位置保持控制器采用带积分的线性二次型方法,干扰观测器由比例积分观测器和补偿单元构成,并证明了复合控制器的稳定性。仿真结果表明,将该控制器应用于某型高空无人机非线性模型,可有效减小输油过程带来的影响,实现了输油阶段的位置保持控制。展开更多
The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and ...The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users.展开更多
文摘针对自主空中加油输油阶段无人机位置保持控制问题,将无人机分为飞机本体和油箱两部分,利用变质量系统理论建立了无人机非线性方程,解决了常规模型无法反映出无人机重量、重心变化的问题。控制律设计方面,通过将变化的油箱转化为外界干扰,提出了基于干扰观测器控制(disturbance observer based control,DOBC)的复合控制结构。复合控制器由位置保持控制器和干扰观测器组成,位置保持控制器采用带积分的线性二次型方法,干扰观测器由比例积分观测器和补偿单元构成,并证明了复合控制器的稳定性。仿真结果表明,将该控制器应用于某型高空无人机非线性模型,可有效减小输油过程带来的影响,实现了输油阶段的位置保持控制。
基金Project(20080431380) supported by the China Postdoctoral Science Foundation
文摘The thermodynamic charge performance of a variable-mass thermodynamic system was investigated by the simulation modeling and experimental analysis. Three sets of experiments were conducted for various charge time and charge steam flow under three different control strategies of charge valve. Characteristic performance parameters from the average sub-cooled degree and the charging energy coefficient point of views were also defined to evaluate and predict the charge performance of system combined with the simulation model and experimental data. The results show that the average steam flow reflects the average sub-cooled degree qualitatively, while the charging energy coefficients of 74.6%, 69.9% and 100% relate to the end value of the average sub-cooled degree at 2.1, 2.9 and 0 respectively for the three sets of experiments. The mean and maximum deviations of the results predicted from those by experimental data are smaller than 6.8% and 10.8%, respectively. In conclusion, the decrease of average steam flow can effectively increase the charging energy coefficient in the same charge time condition and therefore improve the thermodynamic charge performance of system. While the increase of the charging energy coefficient by extending the charge time needs the consideration of the operating frequency for steam users.