为了探究端板对尾流收缩叶梢负载(CLT)桨空化性能的影响,基于Star-ccm+软件对CLT(Contracted and loaded tip)桨P1727的端板变参数模型进行了空化计算,计算采用DDES湍流模型和Schnerr-Sauer空化模型,通过对E779A标准模型桨进行计算,验...为了探究端板对尾流收缩叶梢负载(CLT)桨空化性能的影响,基于Star-ccm+软件对CLT(Contracted and loaded tip)桨P1727的端板变参数模型进行了空化计算,计算采用DDES湍流模型和Schnerr-Sauer空化模型,通过对E779A标准模型桨进行计算,验证了该方法的有效性。研究表明:桨叶表面空化区域与低压区域基本一致,空化区域的范围与推力损失程度呈正相关变化趋势;在端板有效抑制梢部绕流的情况下,端板长度和宽度对CLT桨的敞水性能和空化特性影响微弱;端板倾角对敞水性能和空化特性影响较大,倾角越大,推力和扭矩越大,空化发生时推力衰减程度越大。展开更多
为了提高效率、降低噪声,螺旋桨设计需要在精确的性能预报基础上,平衡不同参数对设计目标带来的影响。本文以面元法为主要手段预报CLT桨的水动力性能,并引入噪声模型进行噪声预报。整个过程以4叶CLT (Contracted and Loaded Tip)桨—P1...为了提高效率、降低噪声,螺旋桨设计需要在精确的性能预报基础上,平衡不同参数对设计目标带来的影响。本文以面元法为主要手段预报CLT桨的水动力性能,并引入噪声模型进行噪声预报。整个过程以4叶CLT (Contracted and Loaded Tip)桨—P1727桨为母型桨,在螺距比为原桨螺距比0.9~1.2倍范围内,考虑3叶、4叶、5叶三种叶数形式,最终计算100个设计桨案例的水动力性能和噪声性能。设计桨最终满足某中型船的推力要求,并寻找螺旋桨最小叶尖涡流噪声-最大效率解集。计算结果表明,在固定推力值的情况下,螺旋桨叶数与噪声成反比趋势,效率与噪声性能受螺距比影响,并呈现出一定的规律性。对于高效桨P1727而言,改变螺距比与叶数会使效率与噪声存在一定的平衡范围,可以应对不同的设计要求。展开更多
目的减小复合材料结构振动响应。方法以全复合材料翼面为研究对象,结合该翼面结构有限元模型,建立带有压电作动器的结构动力学仿真模型。利用PID(Proportional,Integral and Differential)控制理论设计主动控制律,基于Simulink仿真平台...目的减小复合材料结构振动响应。方法以全复合材料翼面为研究对象,结合该翼面结构有限元模型,建立带有压电作动器的结构动力学仿真模型。利用PID(Proportional,Integral and Differential)控制理论设计主动控制律,基于Simulink仿真平台设计控制律程序,通过控制律变参分析得出PID控制各参数的设计规律,基于仿真模型进行主动控制仿真试验。以仿真试验结果为基础,在复合材料翼面上进行振动主动控制地面试验。结果有效地控制了复合材料翼面振动响应,振动响应减小了79.74%,验证了模型和控制律设计的有效性。结论以压电作动器作为控制作动器,通过PID控制理论设计控制律,能够有效控制全复合材料翼面振动,使振动减小。展开更多
文摘为了探究端板对尾流收缩叶梢负载(CLT)桨空化性能的影响,基于Star-ccm+软件对CLT(Contracted and loaded tip)桨P1727的端板变参数模型进行了空化计算,计算采用DDES湍流模型和Schnerr-Sauer空化模型,通过对E779A标准模型桨进行计算,验证了该方法的有效性。研究表明:桨叶表面空化区域与低压区域基本一致,空化区域的范围与推力损失程度呈正相关变化趋势;在端板有效抑制梢部绕流的情况下,端板长度和宽度对CLT桨的敞水性能和空化特性影响微弱;端板倾角对敞水性能和空化特性影响较大,倾角越大,推力和扭矩越大,空化发生时推力衰减程度越大。
文摘为了提高效率、降低噪声,螺旋桨设计需要在精确的性能预报基础上,平衡不同参数对设计目标带来的影响。本文以面元法为主要手段预报CLT桨的水动力性能,并引入噪声模型进行噪声预报。整个过程以4叶CLT (Contracted and Loaded Tip)桨—P1727桨为母型桨,在螺距比为原桨螺距比0.9~1.2倍范围内,考虑3叶、4叶、5叶三种叶数形式,最终计算100个设计桨案例的水动力性能和噪声性能。设计桨最终满足某中型船的推力要求,并寻找螺旋桨最小叶尖涡流噪声-最大效率解集。计算结果表明,在固定推力值的情况下,螺旋桨叶数与噪声成反比趋势,效率与噪声性能受螺距比影响,并呈现出一定的规律性。对于高效桨P1727而言,改变螺距比与叶数会使效率与噪声存在一定的平衡范围,可以应对不同的设计要求。
文摘目的减小复合材料结构振动响应。方法以全复合材料翼面为研究对象,结合该翼面结构有限元模型,建立带有压电作动器的结构动力学仿真模型。利用PID(Proportional,Integral and Differential)控制理论设计主动控制律,基于Simulink仿真平台设计控制律程序,通过控制律变参分析得出PID控制各参数的设计规律,基于仿真模型进行主动控制仿真试验。以仿真试验结果为基础,在复合材料翼面上进行振动主动控制地面试验。结果有效地控制了复合材料翼面振动响应,振动响应减小了79.74%,验证了模型和控制律设计的有效性。结论以压电作动器作为控制作动器,通过PID控制理论设计控制律,能够有效控制全复合材料翼面振动,使振动减小。