In software defined radio (SDR), sharp filters of different bandwidth are required to fine tune the desired channel. This requires different computational resources and large number of filter coefficients. This paper ...In software defined radio (SDR), sharp filters of different bandwidth are required to fine tune the desired channel. This requires different computational resources and large number of filter coefficients. This paper proposes a continuously variable bandwidth sharp finite impulse response (FIR) filter with low distortion and low complexity. For this, a fixed length FIR filter is used with two arbitrary sampling rate converters. This system can be used for both the continuous increase as well as decrease of the effective bandwidth of a filter. The low complexity and sharpness are achieved by using the frequency-response masking (FRM) approach for the design of the fixed length FIR filter. The sharp transition width leads to maximum rejection to channel interference in SDR.展开更多
文摘In software defined radio (SDR), sharp filters of different bandwidth are required to fine tune the desired channel. This requires different computational resources and large number of filter coefficients. This paper proposes a continuously variable bandwidth sharp finite impulse response (FIR) filter with low distortion and low complexity. For this, a fixed length FIR filter is used with two arbitrary sampling rate converters. This system can be used for both the continuous increase as well as decrease of the effective bandwidth of a filter. The low complexity and sharpness are achieved by using the frequency-response masking (FRM) approach for the design of the fixed length FIR filter. The sharp transition width leads to maximum rejection to channel interference in SDR.