An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow ...An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow solver is presented. In the proposed method, the progress variables are defined according to the first two principal components (PCs) from the principal component analysis (PCA) or kernel-density-weighted PCA (KEDPCA) of a set of flamelets. These flamelets can then be mapped to these new progress variables instead of the mixture fraction/conventional progress variables. Thus, a new chemistry look-up table is constructed. A priori validation of these optimized progress variables and the new chemistry table is implemented in a CH4/N2/air lift-off flame. The reconstruction of the lift-off flame shows that the optimized progress variables perform better than the conventional ones, especially in the high temperature area. The coefficient determinations (R2 statistics) show that the KEDPCA performs slightly better than the PCA except for some minor species. The main advantage of the KEDPCA is that it is less sensitive to the database. Meanwhile, the criteria for the optimization are proposed and discussed. The constraint that the progress variables should monotonically evolve from fresh gas to burnt gas is analyzed in detail.展开更多
分析实际程序时往往需要分析程序中函数的调用,一般使用过程间分析来实现全程序分析.函数内联是一种最为精确、易于实现的过程间分析方法.通过函数内联,可以使得已有过程内分析方法和工具支持包含函数调用的程序的分析.但是函数内联后...分析实际程序时往往需要分析程序中函数的调用,一般使用过程间分析来实现全程序分析.函数内联是一种最为精确、易于实现的过程间分析方法.通过函数内联,可以使得已有过程内分析方法和工具支持包含函数调用的程序的分析.但是函数内联后代码的规模急剧增加,同时将产生大量中间变量,增加程序分析的变量维度,导致程序分析过程时空开销大大增加.考虑基于抽象解释框架下函数内联过程间分析的一些不足,并提出了相应的优化方法.基于抽象解释的程序分析关注自动推导程序变量之间的不变式约束关系,因此程序变量构成的程序环境大小(即各程序点处须考虑的相关变量集合)对分析的时空开销具有重要影响.为了减少函数内联后程序分析的开销,提出了面向内联函数块的程序环境降维优化方法.该方法针对内联函数后的程序代码,分析确定不同程序点处需维护的程序环境(即相关变量集合),而不是所有程序点共享同一全局程序环境,从而实现程序状态的降维.详细描述了基于该方法所实现的工具DRIP(dimension reduction for analyzing function inlined program)的架构、模块及算法细节.并在WCET Benchmarks测试集开展了分析实验.实验结果表明:DRIP在变量消除上取得的效果良好,甚至在某些测试集上能减少一半以上的变量,并在一定程度上降低了分析过程的时空开销.展开更多
Building processing,structure,and property(PSP)relations for computational materials design is at the heart of the Materials Genome Initiative in the era of high-throughput computational materials science.Recent techn...Building processing,structure,and property(PSP)relations for computational materials design is at the heart of the Materials Genome Initiative in the era of high-throughput computational materials science.Recent technological advancements in data acquisition and storage,microstructure characterization and reconstruction(MCR),machine learning(ML),materials modeling and simulation,data processing,manufacturing,and experimentation have significantly advanced researchers’abilities in building PSP relations and inverse material design.In this article,we examine these advancements from the perspective of design research.In particular,we introduce a data-centric approach whose fundamental aspects fall into three categories:design representation,design evaluation,and design synthesis.Developments in each of these aspects are guided by and benefit from domain knowledge.Hence,for each aspect,we present a wide range of computational methods whose integration realizes data-centric materials discovery and design.展开更多
We are concerned with partial dimension reduction for the conditional mean function in the presence of controlling variables.We suggest a profile least squares approach to perform partial dimension reduction for a gen...We are concerned with partial dimension reduction for the conditional mean function in the presence of controlling variables.We suggest a profile least squares approach to perform partial dimension reduction for a general class of semi-parametric models.The asymptotic properties of the resulting estimates for the central partial mean subspace and the mean function are provided.In addition,a Wald-type test is proposed to evaluate a linear hypothesis of the central partial mean subspace,and a generalized likelihood ratio test is constructed to check whether the nonparametric mean function has a specific parametric form.These tests can be used to evaluate whether there exist interactions between the covariates and the controlling variables,and if any,in what form.A Bayesian information criterion(BIC)-type criterion is applied to determine the structural dimension of the central partial mean subspace.Its consistency is also established.Numerical studies through simulations and real data examples are conducted to demonstrate the power and utility of the proposed semi-parametric approaches.展开更多
具有单连续变量的背包问题(Knapsack Problem with a single Continuous variable,KPC)是标准0-1背包问题的一个新颖扩展形式,它既是一个NP完全问题,又是一个带有连续变量S的新颖组合优化问题,求解难度非常大.为了快速高效地求解KPC问题...具有单连续变量的背包问题(Knapsack Problem with a single Continuous variable,KPC)是标准0-1背包问题的一个新颖扩展形式,它既是一个NP完全问题,又是一个带有连续变量S的新颖组合优化问题,求解难度非常大.为了快速高效地求解KPC问题,该文提出了利用演化算法求解KPC的新思路,并给出了基于离散差分演化算法求解KPC的两个有效方法.首先,介绍了基本差分演化算法和具有混合编码的二进制差分演化算法(HBDE)的原理,给出了HBDE的算法伪代码描述,并分析了KPC的基本数学模型KPCM1的计算复杂度.然后,在基于降维法消除KPCM1中连续变量S的基础上,建立了KPC的一个新离散数学模型KPCM2;随后在基于贪心策略提出处理不可行解的有效算法基础上,基于单种群HBDE给出了求解KPC的第一个离散演化算法S-HBDE.第三,通过把连续变量S的取值范围划分为两个子区间将KPC分解为两个子问题,并基于降维法建立了KPC的适于并行求解的第二个数学模型KPCM3;在利用贪心策略给出处理子问题不可行解的两个有效算法基础上,基于双种群HBDE提出了求解KPC的第二个离散演化算法B-HBDE.最后,在给出四类大规模KPC实例的基础上,利用S-HBDE和B-HBDE分别求解这些实例,并与近似算法AP-KPC、遗传算法和离散粒子群优化算法的计算结果、耗费时间和稳定性等指标进行比较,比较结果表明S-HBDE和B-HBDE不仅在求解精度和稳定性方面均优于其它3个算法,而且求解速度很快,非常适于在实际应用中快速高效地求解大规模KPC实例.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.50936005,51576182,and 11172296)
文摘An automated method to optimize the definition of the progress variables in the flamelet-based dimension reduction is proposed. The performance of these optimized progress variables in coupling the flamelets and flow solver is presented. In the proposed method, the progress variables are defined according to the first two principal components (PCs) from the principal component analysis (PCA) or kernel-density-weighted PCA (KEDPCA) of a set of flamelets. These flamelets can then be mapped to these new progress variables instead of the mixture fraction/conventional progress variables. Thus, a new chemistry look-up table is constructed. A priori validation of these optimized progress variables and the new chemistry table is implemented in a CH4/N2/air lift-off flame. The reconstruction of the lift-off flame shows that the optimized progress variables perform better than the conventional ones, especially in the high temperature area. The coefficient determinations (R2 statistics) show that the KEDPCA performs slightly better than the PCA except for some minor species. The main advantage of the KEDPCA is that it is less sensitive to the database. Meanwhile, the criteria for the optimization are proposed and discussed. The constraint that the progress variables should monotonically evolve from fresh gas to burnt gas is analyzed in detail.
文摘分析实际程序时往往需要分析程序中函数的调用,一般使用过程间分析来实现全程序分析.函数内联是一种最为精确、易于实现的过程间分析方法.通过函数内联,可以使得已有过程内分析方法和工具支持包含函数调用的程序的分析.但是函数内联后代码的规模急剧增加,同时将产生大量中间变量,增加程序分析的变量维度,导致程序分析过程时空开销大大增加.考虑基于抽象解释框架下函数内联过程间分析的一些不足,并提出了相应的优化方法.基于抽象解释的程序分析关注自动推导程序变量之间的不变式约束关系,因此程序变量构成的程序环境大小(即各程序点处须考虑的相关变量集合)对分析的时空开销具有重要影响.为了减少函数内联后程序分析的开销,提出了面向内联函数块的程序环境降维优化方法.该方法针对内联函数后的程序代码,分析确定不同程序点处需维护的程序环境(即相关变量集合),而不是所有程序点共享同一全局程序环境,从而实现程序状态的降维.详细描述了基于该方法所实现的工具DRIP(dimension reduction for analyzing function inlined program)的架构、模块及算法细节.并在WCET Benchmarks测试集开展了分析实验.实验结果表明:DRIP在变量消除上取得的效果良好,甚至在某些测试集上能减少一半以上的变量,并在一定程度上降低了分析过程的时空开销.
基金support from the National Science Foundation(NSF)Cyberinfrastructure for Sustained Scientific Innovation program(OAC-1835782)the NSF Designing Materials to Revolutionize and Engineer Our Future program(CMMI-1729743)+1 种基金Center for Hierarchical Materials Design(NIST 70NANB19H005)at Northwestern Universitythe Advanced Research Projects Agency-Energy(APAR-E,DE-AR0001209)。
文摘Building processing,structure,and property(PSP)relations for computational materials design is at the heart of the Materials Genome Initiative in the era of high-throughput computational materials science.Recent technological advancements in data acquisition and storage,microstructure characterization and reconstruction(MCR),machine learning(ML),materials modeling and simulation,data processing,manufacturing,and experimentation have significantly advanced researchers’abilities in building PSP relations and inverse material design.In this article,we examine these advancements from the perspective of design research.In particular,we introduce a data-centric approach whose fundamental aspects fall into three categories:design representation,design evaluation,and design synthesis.Developments in each of these aspects are guided by and benefit from domain knowledge.Hence,for each aspect,we present a wide range of computational methods whose integration realizes data-centric materials discovery and design.
基金supported by Humanities and Social Science Foundation of Ministry of Education(Grant No.20YJC910003)Natural Science Foundation of Shanghai(Grant No.20ZR1423000)+1 种基金supported by Natural Science Foundation of Beijing(Grant No.Z19J0002)National Natural Science Foundation of China(Grant Nos.11731011 and 11931014)。
文摘We are concerned with partial dimension reduction for the conditional mean function in the presence of controlling variables.We suggest a profile least squares approach to perform partial dimension reduction for a general class of semi-parametric models.The asymptotic properties of the resulting estimates for the central partial mean subspace and the mean function are provided.In addition,a Wald-type test is proposed to evaluate a linear hypothesis of the central partial mean subspace,and a generalized likelihood ratio test is constructed to check whether the nonparametric mean function has a specific parametric form.These tests can be used to evaluate whether there exist interactions between the covariates and the controlling variables,and if any,in what form.A Bayesian information criterion(BIC)-type criterion is applied to determine the structural dimension of the central partial mean subspace.Its consistency is also established.Numerical studies through simulations and real data examples are conducted to demonstrate the power and utility of the proposed semi-parametric approaches.
文摘具有单连续变量的背包问题(Knapsack Problem with a single Continuous variable,KPC)是标准0-1背包问题的一个新颖扩展形式,它既是一个NP完全问题,又是一个带有连续变量S的新颖组合优化问题,求解难度非常大.为了快速高效地求解KPC问题,该文提出了利用演化算法求解KPC的新思路,并给出了基于离散差分演化算法求解KPC的两个有效方法.首先,介绍了基本差分演化算法和具有混合编码的二进制差分演化算法(HBDE)的原理,给出了HBDE的算法伪代码描述,并分析了KPC的基本数学模型KPCM1的计算复杂度.然后,在基于降维法消除KPCM1中连续变量S的基础上,建立了KPC的一个新离散数学模型KPCM2;随后在基于贪心策略提出处理不可行解的有效算法基础上,基于单种群HBDE给出了求解KPC的第一个离散演化算法S-HBDE.第三,通过把连续变量S的取值范围划分为两个子区间将KPC分解为两个子问题,并基于降维法建立了KPC的适于并行求解的第二个数学模型KPCM3;在利用贪心策略给出处理子问题不可行解的两个有效算法基础上,基于双种群HBDE提出了求解KPC的第二个离散演化算法B-HBDE.最后,在给出四类大规模KPC实例的基础上,利用S-HBDE和B-HBDE分别求解这些实例,并与近似算法AP-KPC、遗传算法和离散粒子群优化算法的计算结果、耗费时间和稳定性等指标进行比较,比较结果表明S-HBDE和B-HBDE不仅在求解精度和稳定性方面均优于其它3个算法,而且求解速度很快,非常适于在实际应用中快速高效地求解大规模KPC实例.