本文针对含有自激励,参数激励和外激励等三种激励联合作用下van der Pol-Mathieu方程的周期响应和准周期运动进行分析,发现其准周期运动的频谱中含有均匀边频带这一新的特性.首先,采用传统的增量谐波平衡法(IHB法)分析了van der Pol-Mat...本文针对含有自激励,参数激励和外激励等三种激励联合作用下van der Pol-Mathieu方程的周期响应和准周期运动进行分析,发现其准周期运动的频谱中含有均匀边频带这一新的特性.首先,采用传统的增量谐波平衡法(IHB法)分析了van der Pol-Mathieu方程的周期响应,得到了其非线性频率响应曲线;再利用Floquet理论对周期解进行稳定性分析,得到了两种类型的分岔及它们的位置.然后,基于van der Pol-Mathieu方程准周期运动的频谱中边频带相邻频率之间是等距的且含有两个不可约的基频的特性(其中一个基频是已知的,另一个基频事先是未知的),推导了相应的两时间尺度IHB法,精确计算出van der Pol-Mathieu方程的准周期运动的另一个未知基频和所有的频率成份及其对应的幅值,尤其在临界点附近处的准周期运动响应.得到的准周期运动结果和利用四阶龙格-库塔(RK)数值法得到的结果高度吻合.最后,研究发现了含外激励van der Pol-Mathieu方程在不同激励频率时的一些丰富而有趣的非线性动力学现象.展开更多
以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到...以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到定常解的稳定条件,确定解的稳定性。在此基础上,分析了参激项、自激项以及分数阶微分项参数对系统幅频特性的影响。结果表明:改变参激项系数主要影响系统的响应幅值和共振频率范围;改变自激项系数主要影响系统响应幅值和多值性;改变分数阶微分项系数和阶次对系统的动力学行为具有双重调节的作用。展开更多
文摘本文针对含有自激励,参数激励和外激励等三种激励联合作用下van der Pol-Mathieu方程的周期响应和准周期运动进行分析,发现其准周期运动的频谱中含有均匀边频带这一新的特性.首先,采用传统的增量谐波平衡法(IHB法)分析了van der Pol-Mathieu方程的周期响应,得到了其非线性频率响应曲线;再利用Floquet理论对周期解进行稳定性分析,得到了两种类型的分岔及它们的位置.然后,基于van der Pol-Mathieu方程准周期运动的频谱中边频带相邻频率之间是等距的且含有两个不可约的基频的特性(其中一个基频是已知的,另一个基频事先是未知的),推导了相应的两时间尺度IHB法,精确计算出van der Pol-Mathieu方程的准周期运动的另一个未知基频和所有的频率成份及其对应的幅值,尤其在临界点附近处的准周期运动响应.得到的准周期运动结果和利用四阶龙格-库塔(RK)数值法得到的结果高度吻合.最后,研究发现了含外激励van der Pol-Mathieu方程在不同激励频率时的一些丰富而有趣的非线性动力学现象.
文摘以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到定常解的稳定条件,确定解的稳定性。在此基础上,分析了参激项、自激项以及分数阶微分项参数对系统幅频特性的影响。结果表明:改变参激项系数主要影响系统的响应幅值和共振频率范围;改变自激项系数主要影响系统响应幅值和多值性;改变分数阶微分项系数和阶次对系统的动力学行为具有双重调节的作用。