This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems ...This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems and is a generalization of the well-known absolute value equations in the matrix case. We prove that tensor absolute value equations are equivalent to some special structured tensor complementary problems. Some sufficient conditions are given to guarantee the existence of solutions for tensor absolute value equations. We also propose a Levenberg-Marquardt-type algorithm for solving some given tensor absolute value equations and preliminary numerical results are reported to indicate the efficiency of the proposed algorithm.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the un-conventional Hamilton-type variational principles of holonomic...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the un-conventional Hamilton-type variational principles of holonomic conservative system in analytical mechanics can be established systematically. This unconventional Hamilton-type variational principle can fully characterize the initial-value problem of analytical mechanics, so that it is an important innovation for the Hamilton-type variational principle. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for analytical mechanics in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work of holonomic conservative system in analytical mechanics, but also to derive systematically the complementary functionals for three-field and two-field unconventional variational principles, and the functional for the one-field one by the generalized Legendre transformation given in this paper. Further, with this new approach, the intrinsic relationship among various principles can be explained clearly. Meanwhile, the unconventional Hamilton-type variational principles of nonholonomic conservative system in analytical mechanics can also be established systematically in this paper.展开更多
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electroma...According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.展开更多
In this paper, we give a smoothing neural network algorithm for absolute value equations (AVE). By using smoothing function, we reformulate the AVE as a differentiable unconstrained optimization and we establish a ste...In this paper, we give a smoothing neural network algorithm for absolute value equations (AVE). By using smoothing function, we reformulate the AVE as a differentiable unconstrained optimization and we establish a steep descent method to solve it. We prove the stability and the equilibrium state of the neural network to be a solution of the AVE. The numerical tests show the efficient of the proposed algorithm.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 11671220, 11401331, 11771244 and 11271221)the Nature Science Foundation of Shandong Province (Grant Nos. ZR2015AQ013 and ZR2016AM29)the Hong Kong Research Grant Council (Grant Nos. PolyU 501913,15302114, 15300715 and 15301716)
文摘This paper is concerned with solving some structured multi-linear systems, which are called tensor absolute value equations. This kind of absolute value equations is closely related to tensor complementarity problems and is a generalization of the well-known absolute value equations in the matrix case. We prove that tensor absolute value equations are equivalent to some special structured tensor complementary problems. Some sufficient conditions are given to guarantee the existence of solutions for tensor absolute value equations. We also propose a Levenberg-Marquardt-type algorithm for solving some given tensor absolute value equations and preliminary numerical results are reported to indicate the efficiency of the proposed algorithm.
基金the National Natural Science Foundation of China(Grant Nos. 10172097 & 10272034)the Science Foundation for Doctoral Program of Ministry of Education of China (Grant No. 20030558025)
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the un-conventional Hamilton-type variational principles of holonomic conservative system in analytical mechanics can be established systematically. This unconventional Hamilton-type variational principle can fully characterize the initial-value problem of analytical mechanics, so that it is an important innovation for the Hamilton-type variational principle. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for analytical mechanics in mechanics. Based on this relation, it is possible not only to obtain the principle of virtual work of holonomic conservative system in analytical mechanics, but also to derive systematically the complementary functionals for three-field and two-field unconventional variational principles, and the functional for the one-field one by the generalized Legendre transformation given in this paper. Further, with this new approach, the intrinsic relationship among various principles can be explained clearly. Meanwhile, the unconventional Hamilton-type variational principles of nonholonomic conservative system in analytical mechanics can also be established systematically in this paper.
基金the National Natural Science Foundation of China ( Grant No. 10172097) the Scientific Foundation of the Ministry of Education of China for Doctoral Program ( Grant No. 20030558025).
文摘According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for electromagnetic elastodynamics can be established systematically. This new variational principles can fully characterize the initial-boundary-value problem of this dynamics. In this paper, the expression of the generalized principle of virtual work for electromagnetic dynamics is given. Based on this equation, it is possible not only to obtain the principle of virtual work in electromagnetic dynamics, but also to derive systematically the complementary functionals for eleven-field, nine-field and six-field unconventional Hamilton-type variational principles for electromagnetic elastodynamics, and the potential energy functionals for four-field and three-field ones by the generalized Legendre transformation given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.
文摘In this paper, we give a smoothing neural network algorithm for absolute value equations (AVE). By using smoothing function, we reformulate the AVE as a differentiable unconstrained optimization and we establish a steep descent method to solve it. We prove the stability and the equilibrium state of the neural network to be a solution of the AVE. The numerical tests show the efficient of the proposed algorithm.