In order to strengthen the face-centered-cubic(FCC) type CoCrFeMnNi high entropy alloys(HEAs), different contents of Mo(0–16 at.%, similarly hereinafter) were alloyed. Phase evolution, microstructure,mechanical prope...In order to strengthen the face-centered-cubic(FCC) type CoCrFeMnNi high entropy alloys(HEAs), different contents of Mo(0–16 at.%, similarly hereinafter) were alloyed. Phase evolution, microstructure,mechanical properties and related mechanism of these HEAs were systematically studied. The results show that sigma phase is appeared with addition of Mo, and the volume fraction of it increases gradually from 0 to 66% with increasing Mo content. It is found that Mo is enriched in sigma phase, which indicates that Mo element is beneficial to form sigma phase. Compressive testing shows that the yield strength of the alloys increases gradually from 216 to 765 MPa, while the fracture strain decreases from 50%(no fracture) to 19% with increasing of Mo. The alloy exhibits the best compressive performance when Mo content reaches 11%, the yield strength, fracture strength and fracture strain are 547 MPa, 2672 MPa and44% respectively. The increased volume fraction of sigma phase plays an important role in improving the compressive strength of(CoCrFeMnNi)_(100-x)Mo_xHEAs.展开更多
A group of binary Sn-xAg alloys (x = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 wt%) has been produced by a single copper roller melt-spinning technique. In this study the interaction between Fermi sphere and Brillouin zone...A group of binary Sn-xAg alloys (x = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 wt%) has been produced by a single copper roller melt-spinning technique. In this study the interaction between Fermi sphere and Brillouin zone and Hume-Rothery condition of phase stability have been verified. It is found that by increasing valence electron concentration VEC the diameter of Fermi sphere 2kF increases which leads to the increase in the diameter of Brillouin zone which arises from the decrease in volume of the unit cell. It is found that the electrical resistivity increases by increasing VEC due to the decrease in relaxation time τ with increasing VEC. Also it has been confirmed that the correlation between Young’s modulus and the axial ratio c/a of β-Sn unit cell.展开更多
Fe-Ni-Cr-based super-high-strength maraging stainless steels were generally realized by multiple-element alloying under a given heat treatment processing. A series of alloy compositions were designed with a uniform cl...Fe-Ni-Cr-based super-high-strength maraging stainless steels were generally realized by multiple-element alloying under a given heat treatment processing. A series of alloy compositions were designed with a uniform cluster formula of [Ni16Fe192](Cr32(Ni16-x-y-z-m-n MoxTiyNbzAlmVn)) (at.%) that was developed out of a unique alloy design tool, a cluster- plus-glue-atom model. Alloy rods with a diameter of 6 mm were prepared by copper-mold suction-cast processing under the argon atmosphere. These alloy samples were solid-solutioned at 1273 K for 1 h, followed by water-quenching, and then aged at 783 K for 3 h. The effect of the valence electron concentration, characterized with the number of valence electrons per unit cluster (VE/uc) formula of 16 atoms, on microhardness of these designed maraging stainless steels at both solid- solutioned and aged states was investigated. The relationship between alloy compositions and microhardness in maraging stainless steels was firstly established by the random forest (RF, a kind of machine learning methods) based on the experimental results. It was found that not only the microhardness of any given composition alloy within the frame of cluster formula, but also the alloy composition with a maximum microhardness for any given VE/uc, could be predicted in good agreement with the guidance of the relationship by RF. The contributions of minor-alloying elements to the microhardness of the aged alloys were also discussed.展开更多
基金supported by the Fund of State Key Laboratory of Advanced Welding and Joining,and the National Natural Science Foundation of China (No.51741404)
文摘In order to strengthen the face-centered-cubic(FCC) type CoCrFeMnNi high entropy alloys(HEAs), different contents of Mo(0–16 at.%, similarly hereinafter) were alloyed. Phase evolution, microstructure,mechanical properties and related mechanism of these HEAs were systematically studied. The results show that sigma phase is appeared with addition of Mo, and the volume fraction of it increases gradually from 0 to 66% with increasing Mo content. It is found that Mo is enriched in sigma phase, which indicates that Mo element is beneficial to form sigma phase. Compressive testing shows that the yield strength of the alloys increases gradually from 216 to 765 MPa, while the fracture strain decreases from 50%(no fracture) to 19% with increasing of Mo. The alloy exhibits the best compressive performance when Mo content reaches 11%, the yield strength, fracture strength and fracture strain are 547 MPa, 2672 MPa and44% respectively. The increased volume fraction of sigma phase plays an important role in improving the compressive strength of(CoCrFeMnNi)_(100-x)Mo_xHEAs.
文摘A group of binary Sn-xAg alloys (x = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 and 6.5 wt%) has been produced by a single copper roller melt-spinning technique. In this study the interaction between Fermi sphere and Brillouin zone and Hume-Rothery condition of phase stability have been verified. It is found that by increasing valence electron concentration VEC the diameter of Fermi sphere 2kF increases which leads to the increase in the diameter of Brillouin zone which arises from the decrease in volume of the unit cell. It is found that the electrical resistivity increases by increasing VEC due to the decrease in relaxation time τ with increasing VEC. Also it has been confirmed that the correlation between Young’s modulus and the axial ratio c/a of β-Sn unit cell.
文摘Fe-Ni-Cr-based super-high-strength maraging stainless steels were generally realized by multiple-element alloying under a given heat treatment processing. A series of alloy compositions were designed with a uniform cluster formula of [Ni16Fe192](Cr32(Ni16-x-y-z-m-n MoxTiyNbzAlmVn)) (at.%) that was developed out of a unique alloy design tool, a cluster- plus-glue-atom model. Alloy rods with a diameter of 6 mm were prepared by copper-mold suction-cast processing under the argon atmosphere. These alloy samples were solid-solutioned at 1273 K for 1 h, followed by water-quenching, and then aged at 783 K for 3 h. The effect of the valence electron concentration, characterized with the number of valence electrons per unit cluster (VE/uc) formula of 16 atoms, on microhardness of these designed maraging stainless steels at both solid- solutioned and aged states was investigated. The relationship between alloy compositions and microhardness in maraging stainless steels was firstly established by the random forest (RF, a kind of machine learning methods) based on the experimental results. It was found that not only the microhardness of any given composition alloy within the frame of cluster formula, but also the alloy composition with a maximum microhardness for any given VE/uc, could be predicted in good agreement with the guidance of the relationship by RF. The contributions of minor-alloying elements to the microhardness of the aged alloys were also discussed.