期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Annihilation Coefficients, Binomial Expansions and q-Analogs
1
作者 H.W.GOULD J.QUAINTANCE 《Journal of Mathematical Research and Exposition》 CSCD 2010年第2期191-204,共14页
Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n... Let {An}∞n=0 be an arbitary sequence of natural numbers. We say A(n,k;A) are the Convolution Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.1) Similary, we define B(n,k;A) to be the Dot Product Annihilation Coefficients for {An}n∞=0 if and only if n∑κ=0A(n,k;A)(x-Aκ)n-k=xn. (0.2) The main result of this paper is an explicit formula for B(n,k;A), which depends on both k and {An}∞n=0. This paper also discusses binomial and q-analogs of Equations (0.1) and (0.2). 展开更多
关键词 Annihilation coefficient Binomial expansion stirling number of the first kind stirling number of the second kind vadermonde convolution.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部