Soil C /N ratio is an important influencing factor in soil nitrogen cycling. Two-year old apple trees( Borkh. cv. ‘Fuji'/Malus hupehensis) were used to understand the effect of soil C/N ratio [6. 52( CK),10,15,20...Soil C /N ratio is an important influencing factor in soil nitrogen cycling. Two-year old apple trees( Borkh. cv. ‘Fuji'/Malus hupehensis) were used to understand the effect of soil C/N ratio [6. 52( CK),10,15,20,25,30,35 and 40]on apple growth and nitrogen utilization and loss by using15N trace technique. The results showed that,with the increasing of soil C/N ratio,apple shoot length and fresh weight increased at first,and then decreased; the higher apple shoot length and fresh weight appeared in C/N = 15,20 and 25 treatments,and there were no significant differences among these three treatments,but significantly higher than the other treatments. Statistical analysis revealed that there was significant difference in nitrogen utilization rate between the different treatments,the highest N utilization rate was occurred in soil C/N = 25 treatment which value was 22. 87%,and there was no significant difference between soil C/N = 25 and C/N = 20 treatments,but both the two treatments were significantly higher than the other treatments; Soil C/N = 40 had the lowest N utilization rate which value was 15. 43%,and this value was less than CK( 16. 65%). The proportion of plant absorption nitrogen from fertilizer was much higher when the value of soil C/N ratio in the range of 15- 25,but the percentage of plant absorption nitrogen from soil was much higher when the soil C/N ratio was too low( < 15) or high( < 25). Amount of residual nitrogen in soil increased gradually with the soil C/N ratio increasing,the amount of residual nitrogen in C/N = 40 treatment was 1. 32 times than that in CK. With the increasing of soil C/N ratio,fertilizer nitrogen loss decreased at first,and then increased,fertilizer nitrogen loss was the minimum in C/N = 25 treatments( 49. 87%) and the maximum were occurred in CK( 61. 54%). Therefore,regarding the apple growth and nitrogen balance situation,the value of soil C/N ratio in the range of 15- 25 would be favorable for apple growth and could increase effectively nitrogen fixed by soil,reduce n展开更多
为探索玉米-大豆套作系统中作物对N素吸收的差异特性,揭示减量施N对玉米-大豆套作系统的N高效利用机理。利用15N同位素示踪技术,结合小区套微区多年定位试验,研究了玉米单作(MM)、大豆单作(SS)、玉米-大豆套作(IMS)及不施N(NN)、减量施N...为探索玉米-大豆套作系统中作物对N素吸收的差异特性,揭示减量施N对玉米-大豆套作系统的N高效利用机理。利用15N同位素示踪技术,结合小区套微区多年定位试验,研究了玉米单作(MM)、大豆单作(SS)、玉米-大豆套作(IMS)及不施N(NN)、减量施N(RN:180 kg N/hm2)、常量施N(CN:240 kg N/hm2)下玉米、大豆的生物量、吸N量、N肥利用率及土壤N素含量变化。结果表明,与MM(SS)相比,IMS下玉米茎叶及籽粒的生物量、吸N量降低,15N%丰度及15N吸收量增加,大豆籽粒及植株的生物量、吸N量及15N吸收量显著提高;IMS下玉米、大豆植株的N肥利用率、土壤N贡献率、土壤15N%丰度降低,15N回收率显著增加。施N与不施N相比,显著提高了单、套作下玉米、大豆植株的生物量、吸N量、15N丰度及15N吸收量;RN与CN相比,IMS下,RN的玉米、大豆植株总吸N量提高13.4%和12.4%,N肥利用率提高213.0%和117.5%,土壤总N含量提高12.2%和11.6%,土壤N贡献率降低12.0%和11.2%,玉米植株15N吸收量与15N回收率提高14.4%和52.5%,大豆的则降低57.1%和42.8%,单作与套作的变化规律一致。玉米-大豆套作系统中作物对N素吸收存在数量及形态差异,减量施N有利于玉米-大豆套作系统对N肥的高效吸收与利用,实现作物持续增产与土壤培肥。展开更多
基金Special Fund for Agro-scientific Research in the Public Interest(201103003)the Earmarked Fund for China Agriculture ResearchSystem(CARS-28)
文摘Soil C /N ratio is an important influencing factor in soil nitrogen cycling. Two-year old apple trees( Borkh. cv. ‘Fuji'/Malus hupehensis) were used to understand the effect of soil C/N ratio [6. 52( CK),10,15,20,25,30,35 and 40]on apple growth and nitrogen utilization and loss by using15N trace technique. The results showed that,with the increasing of soil C/N ratio,apple shoot length and fresh weight increased at first,and then decreased; the higher apple shoot length and fresh weight appeared in C/N = 15,20 and 25 treatments,and there were no significant differences among these three treatments,but significantly higher than the other treatments. Statistical analysis revealed that there was significant difference in nitrogen utilization rate between the different treatments,the highest N utilization rate was occurred in soil C/N = 25 treatment which value was 22. 87%,and there was no significant difference between soil C/N = 25 and C/N = 20 treatments,but both the two treatments were significantly higher than the other treatments; Soil C/N = 40 had the lowest N utilization rate which value was 15. 43%,and this value was less than CK( 16. 65%). The proportion of plant absorption nitrogen from fertilizer was much higher when the value of soil C/N ratio in the range of 15- 25,but the percentage of plant absorption nitrogen from soil was much higher when the soil C/N ratio was too low( < 15) or high( < 25). Amount of residual nitrogen in soil increased gradually with the soil C/N ratio increasing,the amount of residual nitrogen in C/N = 40 treatment was 1. 32 times than that in CK. With the increasing of soil C/N ratio,fertilizer nitrogen loss decreased at first,and then increased,fertilizer nitrogen loss was the minimum in C/N = 25 treatments( 49. 87%) and the maximum were occurred in CK( 61. 54%). Therefore,regarding the apple growth and nitrogen balance situation,the value of soil C/N ratio in the range of 15- 25 would be favorable for apple growth and could increase effectively nitrogen fixed by soil,reduce n
文摘为探索玉米-大豆套作系统中作物对N素吸收的差异特性,揭示减量施N对玉米-大豆套作系统的N高效利用机理。利用15N同位素示踪技术,结合小区套微区多年定位试验,研究了玉米单作(MM)、大豆单作(SS)、玉米-大豆套作(IMS)及不施N(NN)、减量施N(RN:180 kg N/hm2)、常量施N(CN:240 kg N/hm2)下玉米、大豆的生物量、吸N量、N肥利用率及土壤N素含量变化。结果表明,与MM(SS)相比,IMS下玉米茎叶及籽粒的生物量、吸N量降低,15N%丰度及15N吸收量增加,大豆籽粒及植株的生物量、吸N量及15N吸收量显著提高;IMS下玉米、大豆植株的N肥利用率、土壤N贡献率、土壤15N%丰度降低,15N回收率显著增加。施N与不施N相比,显著提高了单、套作下玉米、大豆植株的生物量、吸N量、15N丰度及15N吸收量;RN与CN相比,IMS下,RN的玉米、大豆植株总吸N量提高13.4%和12.4%,N肥利用率提高213.0%和117.5%,土壤总N含量提高12.2%和11.6%,土壤N贡献率降低12.0%和11.2%,玉米植株15N吸收量与15N回收率提高14.4%和52.5%,大豆的则降低57.1%和42.8%,单作与套作的变化规律一致。玉米-大豆套作系统中作物对N素吸收存在数量及形态差异,减量施N有利于玉米-大豆套作系统对N肥的高效吸收与利用,实现作物持续增产与土壤培肥。