期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
基于用户特征和项目属性的协同过滤推荐算法 被引量:28
1
作者 陈志敏 李志强 《计算机应用》 CSCD 北大核心 2011年第7期1748-1750,1755,共4页
在数据极度稀疏的环境下,仅仅依赖用户直接评分数据的传统协同过滤算法无法取得满意的推荐质量。提出基于用户特征和项目属性的协同过滤算法,在用户相似性计算过程中引入时间相关的兴趣度,使得最近邻的确定更加准确;预测评分时,通过衡... 在数据极度稀疏的环境下,仅仅依赖用户直接评分数据的传统协同过滤算法无法取得满意的推荐质量。提出基于用户特征和项目属性的协同过滤算法,在用户相似性计算过程中引入时间相关的兴趣度,使得最近邻的确定更加准确;预测评分时,通过衡量用户信任度来体现各邻居对目标用户最终推荐的贡献程度,并以用户对项目属性的偏好度代替评分数据对新项目进行推荐。基于MovieLens数据集进行的实验结果表明,改进后的算法有效解决了系统冷启动问题,明显提高了系统推荐的准确度。 展开更多
关键词 协同过滤 相似性计算 用户特征 冷启动
下载PDF
采用信任网络增强的协同过滤算法 被引量:12
2
作者 李熠晨 陈莉 +1 位作者 石晨晨 兰小艳 《计算机应用研究》 CSCD 北大核心 2018年第1期116-120,共5页
由于数据稀疏性问题的普遍存在,不仅传统的协同过滤系统中使用单一相似度进行的推荐不具备较高的可信度,而且共同评分项过于稀疏也会导致其推荐性能大打折扣。针对以上问题,提出了一种采用信任网络增强的协同过滤算法(记为ECFATN)。通... 由于数据稀疏性问题的普遍存在,不仅传统的协同过滤系统中使用单一相似度进行的推荐不具备较高的可信度,而且共同评分项过于稀疏也会导致其推荐性能大打折扣。针对以上问题,提出了一种采用信任网络增强的协同过滤算法(记为ECFATN)。通过引入社会网络中常用的信任关系,即在原始的用户—项目评分矩阵上,通过信任计算建立用户间的信任关系,并使用传播规则传递信任关系,构建一个用户信任网络;最终使用用户间的信任度与相似度线性加权作为新的权重进行推荐。在真实的数据集上进行测试,实验结果表明,ECFATN算法不仅在一定程度上缓解了数据稀疏性问题并提高了推荐精度,而且由于信任关系的引入,对于用户冷启动问题也有较大的改善。 展开更多
关键词 数据稀疏性 协同过滤 相似度 信任网络 用户冷启动
下载PDF
新闻推荐系统中用户冷启动问题的研究 被引量:12
3
作者 杨秀梅 孙咏 +1 位作者 王美吉 李岩 《小型微型计算机系统》 CSCD 北大核心 2016年第3期479-482,共4页
提出利用用户上下文信息,解决新闻推荐系统中用户冷启动问题的方法.通过已有用户对于新闻的点击浏览记录,提取其在不同环境中的上下文信息,并利用兴趣分类记录构建决策树分类模型.新用户到达时,提取此用户在当前环境中所带有的上下文信... 提出利用用户上下文信息,解决新闻推荐系统中用户冷启动问题的方法.通过已有用户对于新闻的点击浏览记录,提取其在不同环境中的上下文信息,并利用兴趣分类记录构建决策树分类模型.新用户到达时,提取此用户在当前环境中所带有的上下文信息并与决策树模型进行匹配,以此预测新用户的新闻浏览兴趣,并将新闻主题与用户兴趣进行匹配,进而完成新闻推荐.实验结果表明,本文提出的基于用户上下文信息的方法能够有效缓解新闻推荐系统中用户冷启动问题,用户满意度明显提高,新闻推荐结果更为人性化. 展开更多
关键词 新闻推荐 用户冷启动 上下文信息 决策树
下载PDF
一种基于协作过滤的电影推荐方法 被引量:10
4
作者 陈天昊 帅建梅 朱明 《计算机工程》 CAS CSCD 2014年第1期55-58,62,共5页
在海量网络资源中,用户为了寻找喜欢的视频往往需要进行频繁操作,个性化推荐服务可以有效解决该问题,但当前推荐服务准确度较低,为此,提出一种基于协作过滤的改进推荐方法。根据相似用户群,即邻居集的点播记录确定当前用户的推荐电影子... 在海量网络资源中,用户为了寻找喜欢的视频往往需要进行频繁操作,个性化推荐服务可以有效解决该问题,但当前推荐服务准确度较低,为此,提出一种基于协作过滤的改进推荐方法。根据相似用户群,即邻居集的点播记录确定当前用户的推荐电影子集,挖掘当前用户的喜好,建立兴趣模型,并与推荐子集中的电影进行匹配,按匹配度高低进行推荐。对推荐电影子集进行分类,以适应家庭中多用户观看的情况。另外在系统运行初期采用相似影片的推荐以一定程度地缓解冷启动问题。实验结果表明,与现有协作过滤算法相比,改进推荐方法的推荐准确度有明显提高。 展开更多
关键词 协作过滤 个性化推荐 基于用户 兴趣模型 家庭用户 冷启动
下载PDF
基于信任环的用户冷启动推荐 被引量:6
5
作者 杨圩生 罗爱民 张萌萌 《计算机科学》 CSCD 北大核心 2013年第11A期363-365,397,共4页
近年来,为了解决推荐系统的用户冷启动问题,信任推荐技术得到了长足发展。然而,传统的信任推荐技术在处理信任关系上比较粗糙。基于信任环的推荐思想严格控制了信任度对推荐结果的影响。实验结果表明,该方法能有效解决用户冷启动问题,... 近年来,为了解决推荐系统的用户冷启动问题,信任推荐技术得到了长足发展。然而,传统的信任推荐技术在处理信任关系上比较粗糙。基于信任环的推荐思想严格控制了信任度对推荐结果的影响。实验结果表明,该方法能有效解决用户冷启动问题,并提高推荐的准确率。 展开更多
关键词 信任环 用户冷启动 推荐
下载PDF
面向冷启动用户的元学习与图转移学习序列推荐
6
作者 李璐 张志军 +2 位作者 范钰敏 王星 袁卫华 《山东大学学报(工学版)》 CAS CSCD 北大核心 2024年第2期69-79,共11页
为解决推荐系统用户冷启动问题,提出面向冷启动用户的元学习与图转移学习序列推荐(sequential recommendation for cold-start users with meta graph transitional learning, MetaGTL)。MetaGTL在不使用其他辅助信息的前提下,采用图神... 为解决推荐系统用户冷启动问题,提出面向冷启动用户的元学习与图转移学习序列推荐(sequential recommendation for cold-start users with meta graph transitional learning, MetaGTL)。MetaGTL在不使用其他辅助信息的前提下,采用图神经网络(graph neural network, GNN)建模序列间物品高阶关系生成用户物品嵌入;将交互序列构造为物品对集合,使用序列编码模块捕捉物品间的转移关系,动态建模用户兴趣;采用注意力机制,生成准确的用户特征;采用基于梯度的元学习方法训练模型,生成初始化模型;对模型的工作性能和结果进行详细分析,结合基线模型进行对比评价。试验结果表明,基于元学习与图转移学习的MetaGTL在缺少辅助信息的用户冷启动任务中具有更高的预测精度。 展开更多
关键词 推荐系统 序列推荐 用户冷启动 图神经网络 元学习 深度学习
原文传递
基于用户偏好的信任网络随机游走推荐模型 被引量:4
7
作者 张萌 南志红 《计算机应用》 CSCD 北大核心 2016年第12期3363-3368,共6页
为了提高推荐算法评分预测的准确度,解决冷启动用户推荐问题,在TrustWalker模型基础上提出一种基于用户偏好的随机游走模型——PtTrustWalker。首先,利用矩阵分解法对社会网络中的用户、项目相似度进行计算;其次,将项目进行聚类,通过用... 为了提高推荐算法评分预测的准确度,解决冷启动用户推荐问题,在TrustWalker模型基础上提出一种基于用户偏好的随机游走模型——PtTrustWalker。首先,利用矩阵分解法对社会网络中的用户、项目相似度进行计算;其次,将项目进行聚类,通过用户评分计算用户对项目类的偏好和不同项目类下的用户相似度;最后,利用权威度和用户偏好将信任细化为不同类别下用户的信任,并在游走过程中利用信任用户最高偏好类中与目标物品相似的项目评分进行评分预测。该模型降低了噪声数据的影响,从而提高了推荐结果的稳定性。实验结果表明,PtTrustWalker模型在推荐质量和推荐速度方面相比现有随机游走模型有所提高。 展开更多
关键词 基于信任网络推荐 用户偏好 随机游走 推荐系统 冷启动
下载PDF
一种基于网站聚合和语义知识的电影推荐方法 被引量:3
8
作者 周文乐 朱明 陈天昊 《计算机工程》 CAS CSCD 2014年第8期277-281,共5页
针对传统个性化推荐方法中存在的稀疏性、冷启动、过度专业化且准确率低等问题,提出一种基于网站聚合和知识的电影推荐方法。利用网络爬虫聚合源网站对某部电影的相关推荐,得到待推荐电影集,使用电影知识构建基于本体论的电影模型,并在... 针对传统个性化推荐方法中存在的稀疏性、冷启动、过度专业化且准确率低等问题,提出一种基于网站聚合和知识的电影推荐方法。利用网络爬虫聚合源网站对某部电影的相关推荐,得到待推荐电影集,使用电影知识构建基于本体论的电影模型,并在该模型的基础上给出一种学习用户偏好权重的算法,采用SimRank算法和加权平均值计算电影相似度,根据相似度高低向用户进行推荐。实验结果证明,该方法的推荐准确度在非实时推荐场景下较现有方法提高10%以上,且实时推荐的推荐质量有明显提高,在一定程度上解决了稀疏性、冷启动及过度专业化等问题。 展开更多
关键词 个性化推荐 网络爬虫 网站聚合 本体论 用户偏好 冷启动
下载PDF
音乐推荐系统中的用户冷启动问题
9
作者 刘建东 戚利娜 《吉首大学学报(自然科学版)》 CAS 2017年第4期34-37,共4页
利用新用户使用音乐时的上下文环境信息来解决冷启动问题.当用户播放音乐时,提取用户当时场景的时间、天气、状态等信息,利用这些信息构建决策树分类模型.当新用户使用音乐推荐系统时,提取当前情景的上下文信息,根据决策树分支和上下文... 利用新用户使用音乐时的上下文环境信息来解决冷启动问题.当用户播放音乐时,提取用户当时场景的时间、天气、状态等信息,利用这些信息构建决策树分类模型.当新用户使用音乐推荐系统时,提取当前情景的上下文信息,根据决策树分支和上下文信息判断新用户的兴趣,向新用户推荐音乐.实验结果表明,当采用上下文相关音乐推荐算法,推荐数目不超过6项时,新用户对推荐结果的满意度超过TopN算法. 展开更多
关键词 音乐推荐 决策树分类 用户冷启动
下载PDF
推荐系统冷启动问题解决策略研究 被引量:22
10
作者 乔雨 李玲娟 《计算机技术与发展》 2018年第2期83-87,共5页
推荐系统利用机器学习技术进行信息过滤,快速准确地定位用户需要的信息,并且能够预测用户对目标项目的喜好程度。由于新用户与新项目的存在,传统的推荐系统在缺少数据信息的情况下面临着冷启动问题的挑战,导致系统无法为用户产生准确的... 推荐系统利用机器学习技术进行信息过滤,快速准确地定位用户需要的信息,并且能够预测用户对目标项目的喜好程度。由于新用户与新项目的存在,传统的推荐系统在缺少数据信息的情况下面临着冷启动问题的挑战,导致系统无法为用户产生准确的推荐。分析冷启动产生的原因,阐述解决冷启动问题的意义,从是否考虑冷启动类型等方面对目前推荐系统冷启动问题的研究成果进行分类总结,并尝试给出冷启动问题未来的研究重点与难点。目前较为普遍的处理方式是将多种数据源与多种推荐方法进行混合使用,从而提高系统推荐的准确度与效率,但是仍然存在着如在收集用户各类信息的同时如何保护个人隐私、如何建立推荐系统的效用评价等难点问题。 展开更多
关键词 推荐系统 协同过滤 用户冷启动 项目冷启动 解决策略
下载PDF
推荐系统冷启动问题研究进展 被引量:11
11
作者 史海燕 倪云瑞 《图书馆学研究》 CSSCI 北大核心 2021年第12期2-10,共9页
文章从冷启动问题的基本应对策略、冷启动问题的具体应对方法和特定领域的冷启动问题3个方面梳理相关研究,发现对于各类冷启动问题已形成基本应对策略;主要方法包括基于内容和/或协作式过滤的方法、基于辅助数据的方法、基于用户参与的... 文章从冷启动问题的基本应对策略、冷启动问题的具体应对方法和特定领域的冷启动问题3个方面梳理相关研究,发现对于各类冷启动问题已形成基本应对策略;主要方法包括基于内容和/或协作式过滤的方法、基于辅助数据的方法、基于用户参与的方法等;多媒体信息推荐、标签推荐和跨领域推荐等领域中的冷启动问题值得关注;混合式方法的应用、情境信息与关联数据的应用、基于知识图谱的推荐方法与跨领域推荐方法的应用是需要深入研究的方向。 展开更多
关键词 推荐系统 新用户冷启动 新项目冷启动 新系统冷启动
原文传递
基于用户特征和评分的精准推荐策略研究 被引量:9
12
作者 傅金京 李玲娟 《南京邮电大学学报(自然科学版)》 北大核心 2021年第1期107-114,共8页
个性化推荐系统是帮助用户发现内容,克服信息过载的重要工具。为了提高推荐算法的准确率和效率,综合协同过滤推荐算法和K⁃means聚类算法,设计了一种基于用户特征和评分的精准推荐策略。该策略一方面针对新用户冷启动问题,引入K⁃means聚... 个性化推荐系统是帮助用户发现内容,克服信息过载的重要工具。为了提高推荐算法的准确率和效率,综合协同过滤推荐算法和K⁃means聚类算法,设计了一种基于用户特征和评分的精准推荐策略。该策略一方面针对新用户冷启动问题,引入K⁃means聚类算法对全体用户特征进行聚类,将新用户所属类中其他用户喜好的物品中的Top N个推荐给新用户;另一方面根据物品数和用户数的大小关系,或者不同推荐算法所得F1值的大小关系,来决定选择将哪种推荐算法产生的结果推荐给老用户。在Movielens和FilmTrust数据集上的实验结果表明,这种基于用户特征和评分的精准推荐策略能够有效地针对新用户和老用户做出准确的最佳推荐。 展开更多
关键词 协同过滤推荐 用户冷启动 K⁃means聚类算法
下载PDF
融合信息瓶颈与图卷积的跨域推荐算法
13
作者 王永贵 胡鹏程 +2 位作者 时启文 赵炀 邹赫宇 《计算机工程与应用》 CSCD 北大核心 2024年第15期77-90,共14页
基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经... 基于迁移学习的跨域推荐可以有效地学习连接源域和目标域的映射函数,但其性能仍然受到表征质量不高和负迁移问题的影响,不能有效地为冷启动用户进行推荐,为此提出了一种融合信息瓶颈与图卷积网络的跨域推荐模型(IBGC)。利用图卷积神经网络聚合有关联的用户-用户和项目-项目信息;利用注意力机制学习用户和项目偏好,以提高节点特征表示质量;考虑到两个领域的信息交互,将重叠用户进行嵌入表示的同时限制特定信息的编码,利用信息瓶颈理论设计了三种正则化器,以捕获域内和跨域用户-项目的相关性,并将不同领域的重叠用户表征对齐以解决负迁移问题。在Amazon数据集中的四对公开数据集上进行实验,实验结果表明该模型在MRR、HR@K和NDCG@K三个推荐性能指标上的表现均优于基线模型,在四对数据集上与最优对比基线模型相比,MRR平均提升34.36%,HR@10平均提升34.94%,NDCG@10平均提升36.83%,证明了IBGC模型的有效性。 展开更多
关键词 跨域推荐算法 用户冷启动推荐 图卷积神经网络 信息瓶颈理论 网络嵌入学习 注意力机制
下载PDF
融合用户相似度与评分信息的协同过滤算法 被引量:5
14
作者 乔雨 李玲娟 《南京邮电大学学报(自然科学版)》 北大核心 2017年第3期100-105,共6页
推荐系统利用机器学习的技术进行信息过滤,准确地定位用户需要的信息,并且能够预测用户对目标项目的喜好程度。但是由于新用户和新项目的存在,传统的协同过滤推荐系统面临着冷启动问题的挑战。为了解决协同过滤推荐系统中用户冷启动问题... 推荐系统利用机器学习的技术进行信息过滤,准确地定位用户需要的信息,并且能够预测用户对目标项目的喜好程度。但是由于新用户和新项目的存在,传统的协同过滤推荐系统面临着冷启动问题的挑战。为了解决协同过滤推荐系统中用户冷启动问题,设计了融合用户相似度与评分信息的协同过滤算法(SR-CF)。该算法用基于人口统计学的推荐算法找出用户基本信息之间的相似度,再根据最速下降法对用户评分矩阵进行更新,从而产生对目标用户的推荐。基于Moive Lens公开数据集的实验结果表明,所设计的算法在保证推荐准确率的同时提高了推荐的覆盖率,能有效解决用户冷启动问题。 展开更多
关键词 推荐系统 用户冷启动 人口统计学 评分信息
下载PDF
基于评论方面级用户偏好迁移的跨领域推荐算法 被引量:3
15
作者 张佳 董守斌 《计算机科学》 CSCD 北大核心 2022年第9期41-47,共7页
为解决推荐系统中数据稀疏造成的用户冷启动问题,文中提出了一种基于方面级用户偏好迁移的跨领域推荐算法(Cross-Domain Recommendation via Review Aspect-Level User Preference Transfer, CAUT),设计了基于两阶段生成对抗网络的用户... 为解决推荐系统中数据稀疏造成的用户冷启动问题,文中提出了一种基于方面级用户偏好迁移的跨领域推荐算法(Cross-Domain Recommendation via Review Aspect-Level User Preference Transfer, CAUT),设计了基于两阶段生成对抗网络的用户方面级偏好跨领域迁移结构,通过用户历史评论挖掘用户细粒度方面级偏好。CAUT利用预训练源领域编码器参数对目标领域编码器进行参数初始化,在固定源领域编码器参数的同时引入领域鉴别器,以解决源领域与目标领域数据分布差异的问题,进而可以有效利用源领域的丰富数据,缓解目标领域数据稀疏造成的用户冷启动问题。在亚马逊电商平台真实数据集上进行了实验,结果表明,与最新算法相比,CAUT在用户对商品的评分预测均方根误差(RMSE)指标上有明显的提升,说明CAUT可有效缓解用户冷启动问题。 展开更多
关键词 跨领域推荐 方面级用户偏好 用户冷启动 生成对抗网络
下载PDF
基于用户属性和评分的协同过滤推荐算法 被引量:39
16
作者 丁少衡 姬东鸿 王路路 《计算机工程与设计》 北大核心 2015年第2期487-491,497,共6页
为解决协同过滤推荐系统数据稀疏和冷启动带来的问题,提出一种相似度计算和评分预测算法。结合用户评分相似度、兴趣倾向相似度和置信度3方面,更充分地利用用户评分信息,使得用户相似度的计算更准确、区分度更高;使用sigmoid函数,实现... 为解决协同过滤推荐系统数据稀疏和冷启动带来的问题,提出一种相似度计算和评分预测算法。结合用户评分相似度、兴趣倾向相似度和置信度3方面,更充分地利用用户评分信息,使得用户相似度的计算更准确、区分度更高;使用sigmoid函数,实现冷启动状态下用户相似度计算时用户属性和用户评分信息的平滑过渡。在MovieLens真实数据集上进行实验,实验结果表明,该算法可有效提高评分预测的准确性,在一定程度上解决冷启动的问题。 展开更多
关键词 推荐系统 协同过滤 用户相似度 冷启动 SIGMOID函数
下载PDF
基于用户画像的高校图书馆个性化图书推荐研究 被引量:18
17
作者 王大阜 邓志文 +1 位作者 贾志勇 安计勇 《河南师范大学学报(自然科学版)》 CAS 北大核心 2022年第3期95-103,共9页
个性化推荐服务是高校智慧图书馆的建设重点,基于此,提出了图书推荐系统整体架构.首先从读者的属性、行为、兴趣等标签维度构建用户画像模型,其次考虑读者认知能力存在差异化的特点,将读者按照不同的身份类型划分,再结合基于协同过滤、... 个性化推荐服务是高校智慧图书馆的建设重点,基于此,提出了图书推荐系统整体架构.首先从读者的属性、行为、兴趣等标签维度构建用户画像模型,其次考虑读者认知能力存在差异化的特点,将读者按照不同的身份类型划分,再结合基于协同过滤、内容及属性相似度的混合推荐算法进行图书推荐.最后,通过Hadoop大数据平台向目标读者推荐TOP-N图书,实验结果表明,基于该架构模型的图书推荐系统的推荐准确度高,并且有效缓解了推荐系统的冷启动问题. 展开更多
关键词 推荐系统 智慧图书馆 用户画像 冷启动
下载PDF
基于受限信任关系和概率分解矩阵的推荐 被引量:19
18
作者 印桂生 张亚楠 +1 位作者 董宇欣 韩启龙 《电子学报》 EI CAS CSCD 北大核心 2014年第5期904-911,共8页
现有的推荐算法很难对没有任何记录的冷启动用户或者历史记录稀疏的用户给出准确的推荐,即用户的冷启动问题.本文提出一种基于受限信任关系和概率分解矩阵的推荐方法,由不信任关系约束信任关系的传播,得到准确且覆盖全面的用户信任关系... 现有的推荐算法很难对没有任何记录的冷启动用户或者历史记录稀疏的用户给出准确的推荐,即用户的冷启动问题.本文提出一种基于受限信任关系和概率分解矩阵的推荐方法,由不信任关系约束信任关系的传播,得到准确且覆盖全面的用户信任关系矩阵,并通过对用户信任关系矩阵和用户商品矩阵的概率分解联合用户信任关系和用户商品矩阵信息,为用户给出推荐.实验表明该方法对冷启动用户和历史记录稀疏的用户的推荐效果有较大幅度的提升,有效地解决了用户的冷启动问题. 展开更多
关键词 推荐算法 受限信任传播 概率分解矩阵 用户的冷启动问题
下载PDF
基于用户画像的高校图书馆个性化资源推荐服务设计 被引量:18
19
作者 李宝 《新世纪图书馆》 CSSCI 2021年第4期68-75,共8页
用户画像作为大数据分析背景下个性化推荐服务的设计工具,为高校图书馆领域个性化阅读资源推荐服务提供解决思路。本研究在分析目前个性化推荐和用户画像研究的基础上,引入用户画像技术,从数据基础层、数据处理层、画像构建层、画像服... 用户画像作为大数据分析背景下个性化推荐服务的设计工具,为高校图书馆领域个性化阅读资源推荐服务提供解决思路。本研究在分析目前个性化推荐和用户画像研究的基础上,引入用户画像技术,从数据基础层、数据处理层、画像构建层、画像服务层设计探讨用户画像的构建流程,重点在用户画像构建和画像服务层面进行阐述,同时从用户基本属性、阅读状态、学习风格、阅读偏好四个维度构建用户多维画像模型,并提出基于冷启动和用户阅读学习过程画像的个性化推荐服务策略,以期为后疫情教育环境下高校图书馆开展个性化资源推荐服务和满足用户多维度阅读学习需求提供参考。 展开更多
关键词 用户画像 个性化资源推荐 阅读偏好 冷启动
下载PDF
基于三部图网络结构的知识推荐算法 被引量:10
20
作者 肖扬 王道平 杨岑 《计算机应用研究》 CSCD 北大核心 2015年第2期386-390,共5页
针对传统的知识推荐算法存在用户冷启动和冷门物品推荐的问题,提出了一种基于三部图网络结构的知识推荐算法。在计算相似度时引入网络结构中的度,综合考虑项目的度和权值及标签的度和权值对推荐算法的影响。实验结果表明,该算法提高了... 针对传统的知识推荐算法存在用户冷启动和冷门物品推荐的问题,提出了一种基于三部图网络结构的知识推荐算法。在计算相似度时引入网络结构中的度,综合考虑项目的度和权值及标签的度和权值对推荐算法的影响。实验结果表明,该算法提高了推荐的个性化和多样性,有效地解决了用户冷启动和冷门物品推荐的问题,改善了推荐效果。 展开更多
关键词 三部图 知识推荐 用户冷启动 冷门物品
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部